
Frame work Programmable Platform
for the Advanced Software

Development Workstation

Preliminary System Design
Document

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Richard J. Mayer, Thomas M. Blinn,

Dr. Paula S.D. Mayer, Keith A. Ackley, John W. Crump, IV, Richard Henderson

and Michael T. Futrell of Knowledge Based Systems, Inc. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Ernest M. Fridge, of the Software Technology

Branch, Information Technology Division, Information Systems Directorate,
NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either express

or implied, of NASA or the United States Government.

Framework Progranmmble Platform for the

Advanced Software Development Workstation (FPP/ASDW)

Preliminary System Deign Document

Produced For:

Software Technology Branch

NASA Johnson Space Center
Houston, TX 77058

Authors:

Dr. Richard J. Mayer
Thomas M. Blinn

Dr. Paula S.D. Mayer

Keith A. Ackley

John W. Crump, IV
Richard Henderson
Michael T. Futrell

Knowledge Based Systems, Inc.

2746 Longraire Drive

College Station, TX 77845-5424
(409) 696-7979

December 13, 1991

Table of Contents

2

,3

Introduction 1

1.1 FPP Overview ... 1

1.2 Scope of This Document .. 2

1.3 Document Organization .. 3

FPP Prel|mln_ry Design 5

2.1 FPP Functional Architecture ... 5
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7

2.2

Platform Interface ... 6

Artifact Manager .. 7
Integration Mechanism ... 7
Framework Processor .. 8
Facilitator ... 8
Services .. 9

Network Transaction Manager 9

FPP Operation .. 10

2.2.1 Services Management .. 10
2.2.1.1 Function Service and System Operations 11
2.2.1.2 Artifact Operations 12

2.2.2 Framework Processing .. 13

FPP Detailed Design 17eeoooo,eoooeooelleeBoeeeeoeeoe leoeeaoa eoeoeooe ieele*eeoo • •

3.1 Platform Interface .. 17

3.1.1 Accept Service Request ... 18
3.1.2 Perform Access Authorization 18

3.1.3 Perform Service Request ... 19
3.1.4 Monitor Service Request ... 20
3.1.5 Return Service Results ... 20

3.2 User Session Interface .. 21
3.2.1 Process User Gestures ... 21

3.2.2 Make Service Query ... 22
3.2.3 Submit Service Request .. 22
3.2.4 Present Service Results .. 23

3.3 Artifact Manager .. 24
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8

Distribute Service Request 24
List Design Artifacts .. 25
Check Out Artifact ... 25
Check In Artifact .. 26
Create New Artifact Version 26

Create Artifact Configuration 27
Execute Data Operation .. 28
Execute Artifact Operation 28

4

3.4 Integration Mechanism .. 29

3.4.1 Accept Service Request ... 30

3.4.2 Request Service Plan .. 30

3.4.3 Execute Service Plan .. 31

3.4.3.1 Step Completion Detection 32

3.4.3.2 Step Failure Detection 33

3.4.3.3 Failure Recovery .. 33

3.4.3.4 Perform Plan Context Switch 34

3.4.4 Integration Services Planner 34

3.4.4.1 Lookup Service Plan 35

3.4.4.2 Generate Functional Plan 36

3.4.4.3 Perform Service Advertisement Search 36

3.4.4.4 Perform Service Protocol Search 37

3.4.4.5 Generate Executable Plan 37

3.4.5 Service Registration Manager 38

3.4.5.1 Accept System Request 38
3.4.5.2 File Service Plan .. 39

3.4.5.3 Add Service ... 39

3.4.5.4 Delete Service ... 40

3.4.5.5 Invalidate Plan .. 40

3.5 Framework Processor ... 41

3.5.1 Parse Framework Definition 41

3.5.2 Perform Framework Validation 42

3.5.3 Initialize Framework Definition 42

3.5.4 Session Manager Interface Management 43
3.5.5 Project Query Processor ... 43

3.5.6 Process Event Notification Message 44
3.5.7 Resolve Process Violation Condition 44

3.5.8 Process Project Query Message 45

3.6 Facilitator .. 45

3.6.1 Accept Executable Service Plan Message 46
3.6.2 Route Operation Results ... 46

3.6.3 Make Network Service Operation Call 46
3.6.4 Make Service Operation Call 47

3.7 Network Transaction Manager .. 47

3.7.1 Send Network Message .. 47

3.7.2 Receive Network Message 48
3.7.3 Monitor Network Traffic.... 49

3.8 Services ... 50

3.8.1 Accept Command Line Arguments 50
3.8.2 Return Result ... 50

3.8.3 Internal Processing ... 51

FPP Data Structures and Data Collections 53

4.1 FPP Data Structures ... 53

4.1.1 User Data Structure ... 53

4.1.2 Application Message .. 53

ii

4.2

4.1.3
4.1.4
4.1.5
4.1.6

4.1.7

4.1.8

Data
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

Artifact Object ... 53
Confirmation Message ... 53
Error Messages ... 53
Service Plan Structures .. 54
4.1.6.1 Plan Status Table 54

4.1.6.2 Executable Service Plan 54
4.1.6.3 Functional Service Plan 54
4.1.6.4 Service Plan Cache 54

4.1.6.5 Executable Service Step 54

Service Operation Structures 55
4.1.7.1 Service Request .. 55
4.1.7.2 Service Results ... 55

Network Operation Structures 55
4.1.8.1 Network Message 55
4.1.8.2 Network Specific Message 55

Collections .. 55

Platform Interface Active Service Request Log 56
Network Log ... 56
Access Policy Database ... 56

Artifact Repository ... 56
Service Repository .. 56

Plan Repository ... 57
Host Definitions ... 57

5 Status and Future Directions ... 58

6 References and Related Papers 61

Appendix A Lexical and Grammar Conventions 63

Lexical Conventions ... 63

Grammar Conventions .. 63

Appendix B Data Query Language Specification 65

Appendix C Service E_ Representation Language Glmmmar 67"

Appendix D Service Request Language ... 73

Appendix E Service Results Language 75oee oeo oe • _ • • • • • •eo oQ oo eoo

Appendix F Network Message Format Description 77

iii

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. Framework Programmable Platform Architecture 6

2. Framework Processor Architecture 14

3. Accept Service Request Data Information 18

4. Perform Access Authorization Data Information 19

5. Perform Service Request Data Information 20

6. Monitor Service Request Data Information 20

7. Return Service Results Data Information 21

8. Process User Gesture Data Information 22

9. Make Service Query Data Information 22

10. Submit Service Request Data Information 23

11. Present Service Results Data Information 23

12. Distribute Service Request Data Information 24

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

List Design Artifacts Data Information 25

Check Out Artifact Data Information 25

Check In Artifact Data Information 26

Create New Artifact Version Data Information 27

Create Artifact Configuration Data Information 27

Execute Data Operation Data Information 28

Execute Artifact Operation Data Information 29

Integration Mechanism Operation 29

Accept Service Request Data Information 30

Request Service Plan Data Information 31

Execute Service Plan Data Information 32

Step Completion Detection Data Information 32

iv

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure

Figure

• Figure

Figure 40.

Figure 41.

Step Failure Detection Data Information 33

Failure Recovery Data Information 33

Perform Plan Context Switch Data Information 34

Integration Services Planner Operation 35

Lookup Service Plan Data Information 35

Generate Functional Plan Data Information 36

Perform Service Advertisement Data Information 36

Perform Service Protocol Search Data Information 37

Generate Executable Plan Data Information 37

Accept System Request Data Information 38

File Service Plan Data Information 39

Add Service Data Information .. 39

37. Delete Service Data Information ... 40

38. Invalidate Plan Data Information 40

39. Parse Framework Definition Data Information 41

Perform Framework Validation Data Information 42

Initialize Framework Definition Data Information 42

Figure 42. Session Manager Interface Management Data

Information ... 43

Figure 43. Project Query Processor Data Information 43"

Figure

Figure

Figure

Figure

Figure

Figure

Figure

44. Process Event Notification Message Data Information 44

45. Resolve Process Violation Condition Data Information 44

46. Process Project Query Message Data Information 45

47. Accept Executable Service Plan Data Information 46

48. Route Operation Results Data Information 46

49. Make Network Operation Call Data Information 47

50. Make Service Operation Call Data Information 47

V

Figure 51.

Figure 52.

Figure 53.

Figure 54.

Figure 55.

Figure 56.

Send Network Message Data Information 48

Receive Network Message Data Information 49

Monitor Network Traffic Data Information 49

Accept Command Line Arguments Data Information 50

Return Result Data Information .. 51

Internal Processing Data Information 51

Figure 57. Network Message Format .. 77

vi

1 Introduction

The Framework Programmable Software Development Platform (FPP) is a

project aimed at combining effective tool and data integration mechanisms
with a model of the software development process in an intelligent

integrated software development environment. Guided by the model, this

system development framework will take advantage of an integrated

operating environment to automate effectively the management of the

software development process so that costly mistakes during the

development phase can be eliminated. This Platform is being developed

under the Advanced Software Development Workstation (ASDW) Program

sponsored by the Software Technology Branch at NASA Johnson Space
Center. The ASDW program is conducting research into development of

advanced technologies for Computer Aided Software Engineering (CASE).

1.1 FPP Overview

The FPP was conceived in response to difficulties of producing software

systems. With the advent of more powerful and more economical computer

hardware resources, the complexity of software systems has increased

dramatically. As computer systems become more complicated, ensuring

that systems are produced in a consistent manner, on time, and within

budget, and ensuring that the system built is reliable and maintainable,

requires a considerable management effort.

One characteristic of large software systems is the inability of a single

• person to fully understand the requirements, produce the design, and

develop the system. Instead, the system development process must be

executed by a team of managers and software engineers. Tasks within the

development can occur concurrently, except where certain tasks depend on

information produced by others. These interrelationships make the

management of the development process very difficult. Regardless of how

well a development project may be planned out, without some form of

control over the actions of the development team, costly mistakes and

setbacks are bound to occur during development. This is particularly true

in multi-year projects that suffer from management and technical team

leadership turnover.

One promise of Computer Aided Software Engineering (CASE) tools was to

assist project managers in monitoring the progress of the development

activities and in capturing the experiences of the development team.

However, the existing CASE tools fail to cover the entire software

development process and tend to concentrate instead on a particular aspect

of the development process (i.e., project management, requirements

analysis, code development and debugging). The result has usually been to

use a piecemeal collection of various CASE tools that addresses only

portions of the development process during the development of software

systems.

FPP System Design Introduction

Many of these tools are quite useful within their specified area of the system

development process. A persistent problem with these tools, however, has

been in trying to use the tools in some organized fashion to fully automate

the system development process. Incompatible data formats along with the

misuse of tools make interaction among these different tools very difficult.

As a result, development of CASE environments that effectively automate

the software engineering process are nonexistent.

The recognition of these difficulties has spurred the development of the

FPP. The focus of the FPP is the management, control, and integration of

the software system development process. The major goals in this

definition of the FPP have been to provide:

1. a realistic integration strategy that supports function and

data integration of a suite of tools (distributed and

covering the entire life-cycle);

2. integrated access to and update of life cycle artifact data;

3. control of life cycle activities and data evolution; and

4. a site-specific development process support environment,

enforcing the rules and preferred methods of the

organization.

The FPP is also expected to provide these capabilities in a distributed,

heterogeneous computing environment. Developing a platform that meets

these goals should result in (1) a reduction in the time required to produce

software systems, (2) an increase in the quality of the resulting software
systems, (3) a decrease in the maintenance effort for the resulting software

systems, and (4) an increase in the consistency in the development process

by which software systems are constructed.

1.2 Scope of This Document

Following extensive work in the definition of the operational concepts ([FPP

90a]) and functional requirements ([FPP 90b]) of the Framework
Programmable Platform, recent work on the FPP has focused on the design

of the components that make up the FPP. Two previous documents detailed

the design of the Integration Mechanism component ([FPP 91a]) and the

Framework Processor component ([FPP 91b]). These two components

represent the most interesting and complex aspects of the FPP and

therefore warranted their own independent design documents.

The focus of this document is on the design of the remaining components of

the FPP. These components serve as supporting systems for the
Integration Mechanism and the Framework Processor and provide the

"glue" that ties the FPP together. More specifically, this document covers

the components of the FPP that allow the platform to operate in a

distributed, heterogeneous environment and to manage the development
and evolution of software system artifacts.

Introduction FPP System Design

At present, this document represents the final design document to be
produced as part of the FPP effort. As such, this document reflects the
design of the FPP as it currently exists and as the FPP is to be implemented.
As the FPP design has evolved over the last few months, this document will
also reflect any changes in the designs of the Integration Mechanism and
the Framework Processor.

As the next stage of the FPP development is to actually implement the
designs represented in this document and the two previous documents, this
document has a slightly different feel than the two previous design
documents. The designs of the Integration Mechanism and the
Framework Processor presented more of a system design. That is, the
documents described more how the two components would be decomposed
into subsystems and how they would operate than how they would actually
be implemented. In this document, the system designs of the remaining

components along with their relationships to the Integration Mechanism
and the Framework Processor will be defined. But, more importantly, a

detailed description of the software design for each of these components will
be provided. In addition, the software designs of the Integration
Mechanism and Framework Processor will be presented. Definition of the
software design will allow the transition to implementation to occur with
minimal effort.

1.3 Document Organization

The design of the FPP is presented in the following sections. The
discussion begins in Section 2 with the presentation of the Preliminary
Design of the FPP. In this discussion, the architecture of the FPP is
presented and the components of the platform are identified. Also in this
section, a scenario of how the various components will work together is
presented.

In Section 3, the discussion shifts to a detailed discussion of the design of

each of the components of the FPP. In this section, the software modules
that make up each of the components of the FPP are identified and a
discussion of the functionality to be provided by each of the modules is
provided.

In Section 4, a discussion of data types and data repositories to be used by
the FPP is provided. The data types provide the structures by which the
various components of the FPP will be able to communicate. The data
repositories represent data storage bases that will maintain information
necessary for the proper operation of the FPP.

Finally, Section 5 describes the state of the FPP project and directions that
will be pursued in the future. Section 6 presents a list of references and
related documents. This section is followed by several appendices that
provide syntaxes for languages to be used by various components of the

FPP System Design Introduction

4

FPP. Appendix A describes conventions used in the specifications of these

syntaxes. Appendix B describes the Data Query Language Syntax.

Appendix C describes the Service External Representation Language

Syntax. Appendix D describes the Service Request Language Syntax.

Appendix E describes the Service Results Language Syntax. Appendix F

provides a Network Message Format Description.

Introduction FPP System Design

2 FPP Preliminary Design

In developing an environment that provides automated support for the

management, control, and integration of the software development process,

the necessary functionality tended to center around two broad themes:

integration and process management. In the FPP Integration Mechanism

Design Document ([FPP 91a]), the strategy for integrating CASE tools in a

distributed, heterogeneous environment was described. In the FPP

Framework Processor Design Document ([FPP 91b]), the means for

representing a software development process and using that description to

automatically monitor and control that process was described.

In producing the designs for the Integration Mechanism and Framework

Processor, however, certain assumptions in the abilities of an operational

FPP were made. Among other things, the Integration Mechanism

assumed that the FPP would support network message passing between
different hosts and The Framework Processor assumed interaction between

the Integration Mechanism and the Framework Processor. It is these

assumptions that this design document addresses. The discussion begins

in this section by first describing the functional architecture of the FPP and

then by describing how the various components of the architecture will

work together to integrate and manage the software development process.

2.1 FPP Functional Architecture

In this section, a description of the architecture of the FPP and the

• components that make up that architecture will be provided. As the FPP is

expected to operate in a distributed, heterogeneous hardware environment,
the architecture of the FPP incorporates a layered approach. This

approach allows the more machine or network dependent components to be

separated from the components that provide the more generic functionality

of the FPP. This design approach was required because of the multiple

platforms that will be supported by the FPP. The separation will allow the

generic components to be developed independent of a specific machine and

will therefore be easily ported between machines. When support for a new

machine is necessary or desired, only the system dependent components
will have to be reexamined for modification.

It should be noted that the FPP architecture to be presented is a derivative of

the Design Knowledge Management System platform architecture that

KBSI is currently developing for the Air Force [DKMS 90], [DKMS 91]. The

approach in designing the FPP has been to leverage off of the DKMS effort

where possible. The most notable similarity between the two systems is the

application of the Integration Services approach by the Integration

Mechanism. The FPP uses the Integration Services approach as a basis for

system integration and then combines the services capability with the

framework programmability provided by the Framework Processor to

support the management and control of the software development process.

FPP System Design FPP Preliminary Design

Network Manager I

Network Manager

(remote)

Facilitator

v

Services

erviceI
rvice I

rvice I

Service

Figure 1. Framework Programmable Platform Architecture

Figure 1 illustrates the architecture of the FPP. The diagram shows the
functional architecture where each box in the diagram represents a

functional unit and the links between the boxes represent interfaces
between functional units. The remainder of this section is dedicated to the

discussion of the purpose and design of these units.

2.1.1 Platform Interface

The Platform Interface represent the external interface to the FPP. This
component serves as a user's direct link to the FPP environment, either

through the FPP user interface or through some application accessing the

FPP through the specified programming protocols. The Platform Interface

accepts user messages (commands). Messages will be interpreted by the

Platform Interface and dispatched according to their general category.
These categories include 1) Artifact Management, 2) Functional Service

Requests, and 3) System Commands. Artifact management messages are

dispatched to the Artifact Manager and Functional Service Requests are

dispatched to the Integration Services Manager. System Commands are
either handled in the Platform Interface itself or dispatched to the

Integration Service Manager as appropriate.

FPP Preliminary Design FPP System Design

It is important to note that the Platform Interface does not represent a

program interface. Instead, the Platform Interface simply provides a set of

functions and protocols that allow applications access to the functionality

provided by the FPP. During the implementation of the FPP, the first

application to be built using the functions provided by the FPP will be an

FPP user interface. This application will provide a graphical user interface

for using the FPP functionality and will access the FPP through the
Platform Interface.

2.1.2 Artifact Manager

The Artifact Manager is responsible for the management of life cycle

design artifacts. In managing life cycle artifacts, the Artifact Manager
will provide functionality for registering data artifacts in the repository and

for maintaining access control over the artifacts. The Artifact Manager

will also include versioning and configuration management functionality

and will be used to manage Integration Platform system resource artifacts.

In performing these functions, the Artifact Manager will take advantage of

the functionality provided by the Integration Services Manager to actually

invoke and execute many of the functional services required to support the

management of artifacts.

2.1.3 Integration Mechanism

The Integration Mechanism is responsible for monitoring and controlling

the generation and execution of integration service plans. The idea behind

the services approach is based on the view that computer tools and utilities

provide services to users. The Integration Mechanism provides the means

for defining the services provided by tools and support for the automatic
execution of those services. The reader is referred to [FPP 90a] and [FPP

91a] for a more detailed discussion of the integration services concept.

The Integration Mechanism consists mainly of two components: the

Integration Services Manager and the Integration Services Planner. The

Integration Services Manager is responsible for monitoring and controlling

the generation and execution of integration service plans. The Integration

Services Manager provides the means for defining the services provided by

tools and support for the automatic execution of those services. The

Integration Services Planner is responsible for generating the service plans

that will be used by the Integration Services Manager. The service request

received by the Integration Services Manager may have a service plan

stored in the plan repository. If this is the case, the Integration Services

Planner simply retrieves this plan and returns it to be executed by the

Service Plan Executor. If no plan can be found in the repository, a plan

must be generated. This is what the Integration Services Planner does,

using the information stored about the available services.

FPP System Design FPP Preliminary Design

8

2.1.4 Framework Processor

The Framework Processor provides the functionality for interpreting a

system development framework and using the information maintained in

the framework to monitor and control the system development process. The

reader is referred to [FPP 90a] and [FPP 91b] for a more detailed description

of framework processing.

In the development of the FPP, the operational approach taken by the

Framework Processor has evolved from being an integrated component of

the FPP Platform to being a separate, but cooperating, component. This

idea is reflected in Figure 1 by showing the FrameworkProcessor as a
shaded box that lies behind the Platform Interface and Integration

Mechanism. A major reason for this new approach is the desire to

separate the functionality provided by the Framework Processor from the

functionality of the Integration Platform.. Doing this allows the Framework

Processor to be platform independent. That is, the Framework Processor

can be coupled with any integration platform that might be used within an

organization.

However, this approach requires that protocols for communicating with the
Framework Processor be defined and that an interface between the

Framework Processor and the chosen integration platform be constructed.
In the case of the FPP, the Framework Processor will mainly interact with

the higher level components (i.e., Artifact Manager and Integration
Mechanism). As a result, interfaces will only have to be defined between

those, components and the Framework Processor. With these interfaces in
place, the Framework Processor would simply respond to queries from the

various components of the FPP about the framework contents. In addition,

the various components would send messages to the Framework Processor

to indicate the occurrence of events during the evolution of active projects.

So, instead of a Framework Processor controlling the operation of every

component, each component will access the information about the
framework to ensure that the constraints of the framework are not violated.

2.1.5 Facilitator

The Facilitator serves as a dispatcher of messages between higher level

components (Artifact Manager and Integration Mechanism) and the lower

level components (Services and Network Transaction Manager). This

separation between higher and lower level components is required since the

Data Managers and Network Transaction Managers will be more machine

dependent than the more portable Artifact Manager and Integration

Mechanism. The Facilitator will provide a common interface between

these two levels so that the impact of changes in one level will be reduced, if
not eliminated, in the other level.

The Facilitator is also required because of the distributed nature of the FPP.
When accessing data, whether that data resides on the local machine or on

FPP Preliminary Design FPP System Design

a remote machine should be transparent to the Artifact Manager. To hide

the location of the data from the Artifact Manager requires an intermediate

party to parse the data id and route the data query to either the appropriate

machine (through the Network Transaction Manager) or the appropriate

data manager on the local machine. The Facilitator will be responsible for

this routing of data requests. In a similar manner, the location of a

functional service being accessed by the Integration Services Manager

should be transparent to the Integration Services Manager. Again, an

intermediate party is required to route the service request to the host on

which the requested service is available. The Facilitator will be responsible

for routing these service requests as well.

2.1.6 Servioes

The Services component represents the link between the FPP and the local

host operating system. Actually, the Services component is not one single

program, but rather a collection of programs that share a common
interface with the FPP. These are the components that do the real work

and provide the FPP with considerable flexibility. Ideally, each Service

program performs one specialized task. This allows each of the programs

to be quite small, and since the FPP is required to handle multiple service

requests at the same time, this allows the impact of the multiple threads on

system resources to be quite minimal. In order for a particular service to be
accessible to the FPP, it must be registered in the Service Repository.

It is also through this Services interface that the FPP will access all system-

specific and artifact-specific data. This will be accomplished by defining a

data service built on top of a database system running at a particular site.

Through the protocols established, the FPP will be able to access and

manipulate data independent of the specific database used.

2.1.7 Network Transaction Manager

The Network Transaction Manager (NTM) is responsible for sending and

receiving network operations for the FPP running on the local machine.

The operations might include data queries or updates to database

managers running on other machines, request for service execution on
remote machines, or simple network file transfer operations. The goal of

the NTM is to provide a common networking interface between different

FPP nodes that provides a higher level of abstraction than the many

existing networking protocols.

The combination of the Network Manager on the local machine and the

Network Manager on the remote machine serves as a bridge between one
Facilitator and another. The messages that the Facilitator receives from

the Network Manager will be in the same format as those messages
received from the Platform Interface, and the data returned to the

Facilitator from the Network Manager will be in the same format as the
data returned from the Data Services. Thus, the Facilitator could treat the

Network Manager as simply a special service. (This is not completely true;

FPP System Design FPP Preliminary Design

lO

some operations require that the Facilitator retry a request on a remote
machine after failing on the local machine. One would not want the remote

machine to fail and retry remotely as well. This, however is a special case.)

2.2 FPP _fion

With a description of each major component of the FPP provided, it is now

necessary to describe exactly how the various components will work

together to satisfy the functional requirements of the FPP [FPP 90b]. The

functionality provided by the FPP can be categorized as either Service

Management or Framework Processing capabilities. This section will give

a description of each of these functional categories and how the components

of the FPP architecture support these categories.

2.2.1 Services Management

Services Management refers to the basic areas of functionality to be

supported by the FPP: Artifact Management and Integration Services

support. These capabilities are designed to effectively integrate data
residing and tools running on different hardware platforms at a particular

site. Artifact Management support allows users to maintain a registry of a
life cycle artifacts and maintains control over access to and modification of

those artifacts. Integration Services support allows users and applications

access to defined services on local and remote machines. Taken together,

these two capabilities provide an integrated environment by allowing tools

to share data as well as functionality.

Initiation of either of these two FPP services is achieved through the

Application Interface. Three types of operations are currently accessible
through the Application Interface:

1. Functional Service Requests,

2. Artifact Management Operations, and

3. System Commands.

Functional Service Request operations represent requests for operations

that are accessible through the Services interface, either locally or on a

remote machine, described in Section 2.1.6. Artifact Management

Operations represent requests for the manipulation of software life cycle
artifacts. This group of requests includes such operations as Artifact

Check In, Artifact Check Out, and Artifact Browse. Finally, System

Commands represent operations that are supported directly by the local

host operating system. These commands essentially give the FPP the
ability to shell to the host operating system.

A system can access these operations by passing service request messages
to the Application Interface. The structure of these messages must adhere

to the Service Request Language Grammar defined in Appendix D and

multiple service requests can be bundled into one message. When the

FPP Preliminary Design FPP System Design

11

Application Interface receives a service request message, the Application
Interface iteratively processes each request in the message bundle (in most
cases there will only be one request). Based on the type of request being
made (i.e., Functional, Artifact, or System), the Application Interface will
route the request to the appropriate component. For Functional Service

Requests or System Commands, the request message is routed directly to
the Integration Mechanism. For Artifact Management Operations, the
request message is routed directly to the Artifact Manager.

2.2.1.1 Function Service and System Operations

In the case of a Functional Service Request or System Command, the
message is routed to the Integration Mechanism, and more specifically to

the Integration Services Manager. If the message contains a System
Command, the message is passed directly to the Facilitator, with no special

action taken by the Integration Services Manager. However, if the message
contains a Functional Service Request, a service plan must be generated

before the execution plan can be passed to the Facilitator.

The first step in the service plan generation is a pre-plan lookup. The
Integration Mechanism maintains a library of previously generated service
plans. In the event that the requested service has been provided before, the

plan will exist in this library and can be simply recalled. If, however, no
pre-existing plan is found, the service request is passed to the Integration
Services Planner. At this point, the Integration Services Planner attempts
to generate a functional plan, a hardware and software independent form
of an executable plan, based on the knowledge base of planner objects.
These planner objects are defined for every service accessible by the FPP
and are defined using the Service External Representation Language found
in Appendix C. If no functional plan can be generated, the Integration
Mechanism returns an unsupported service error to the Application
Interface. If a functional plan can be generated, the resulting functional
plan is transformed into an executable plan by determining which utilities
will perform each step of the functional plan. Once an executable plan is
generated, the plan is returned to the Integration Services Manager and is
executed. Execution, as far as the Integration Services Manager is
concerned, simply involves passing the executable service plan to the
Facilitator and monitoring the progress of the plan execution.

When the Facilitator receives an executable service plan, the plan is

processed by iterating over each step in the plan. For each step, the
Facilitator determines if the step is to be executed locally or remotely. For
local operations, the Facilitator spawns a process on the local machine to
execute the desired operation. For remote operations, the Facilitator
bundles the step explanation in a network message, as described in
Appendix F, and passes the message to the Network Transaction Manager.
In either case, the Facilitator waits for execution of the step to complete

before beginning execution of the next step. As steps complete, the
Facilitator collects intermediate results until the final step is completed, at

FPP System Design FPP Preliminary Design

12

which point the Facilitator returns the service results to the Integration

Services Manager.

Since the Facilitator waits for each step in a service plan to complete before

proceeding, it is necessary to spawn multiple Facilitators to allow multiple

services to be executed at the same time. Relying on a single Facilitator

could result in a tremendous backlog of service requests, especially if the

service currently being executed involves a long term action. To prevent

this situation, the Integration Services Manager will spawn a Facilitator

process for each service plan the ISM needs to have executed.

2.2.1.2 Artifact Operations

The previous scenario has shown how the components of the FPP are used

to access and use Integration Services. Another capability provided by the

FPP is that of Artifact Management. This capability is concerned with the

management and control of software life cycle artifacts. As mentioned,

Artifact Operations are received by the Platform Interface and routed to the

Artifact Manager component of the FPP. The strategy taken by the Artifact
Manager in processing these artifact operations is to first determine

whether the operation should be executed and, if so, to actually perform the

operation.

The first requirement that must be met for the operation to be performed

deals with user authorization. As the FPP is intended to manage artifacts

that are considered important to an organization, it is imperative that the

Artifact Manager enforce access control policies established by the

organization. These policies specify what users should have access to the

artif_icts managed by the Artifact Manager. As a result, every artifact

operation request must be passed through an authorization procedure to

ensure that the user submitting the artifact operation should be allowed to

complete the operation. If the authorization fails, the operation is

terminated and the user is sent an authorization failure message.

In the event that user authorization is approved, conditions that may
prevent the execution of the operation are analyzed. For the most part,

these conditions would involve a certain artifact being in a state that does

not allow the requested operation to be performed. For example, if a user
requests to Check Out a specific artifact, the Artifact Manager must

determine if some other user has already checked out the artifact, in which

case the artifact is locked and no other users can access the artifact (except

on a read only basis).

If it is determined that no conditions prevent the execution of the requested

operation, the Artifact Manager executes the necessary steps to perform the

operation. In the case of a Check Out operation, the artifact information is
updated to reflect that the artifact has been checked out and a message is

sent to the user indicating where the artifact is located. For a Check In

operation, the artifact information is updated and the Artifact Manager

copies the artifact into the artifact library.

FPP Preliminary Design FPP System Design

13

Looking back at Figure 1, notice that the Artifact Manager is layered on top

of the Integration Mechanism. The reason for this is that the Artifact

Manager takes advantage of the functionality provided by the Integration

Mechanism to store and manipulate artifact data and access the host

operating system (for file manipulation). Recall that the FPP will use the

Services interface to provide access to databases maintaining FPP system
information. The Artifact Manager is one component that will follow this

practice. The advantage of this approach is that artifact information does

not necessarily have to reside on the same machine that the Artifact

Operation originated from. Because of the operation of the Integration
Mechanism and the Facilitator, the artifact information can be distributed

across all the machines running in the FPP environment.

Following this approach, when the Artifact Manager needs access to data

pertaining to a specific artifact or group of artifacts, the Artifact Manager
will produce a Function Service Request. The structure of this particular

type of service request will adhere to the Data Query Language described in

Appendix B. Once the service request is generated, the request will be sent

to the Integration Mechanism and processed in the same manner as

described above. When the Artifact Manager initiates a Functional Service

Request to the Integration Mechanism, it is likely that the requested service

will be a data service defined specifically for the operation of the FPP.

Except for the initial request, this will almost ensure that a service plan for

the requested service will exist in the plan library, thus reducing overhead

that could arise from the Artifact Manager relying on the Integration
Mechanism for execution of functional services.

2.2.2 Framework Processing

Framework Processing refers to the ability to use a representation of the

system development process (i.e., the framework) to manage and control

that development process. The Framework Processor component of the

FPP will be responsible for taking a framework as input and using the
information maintained in the framework to monitor various software

development projects within an organization. Among other things, the

framework will contain information pertaining to:

1. the development process to be followed in producing a

software system,

2. the methods and tools that should be used in producing

the software,

3. the users and user role types that will be responsible for

tasks within the process, and

4. the artifacts produced and manipulated during the

process.

The role of the Framework Processor is to extract this information from the

framework representation, to make the information available to

FPP System Design FPP Preliminary Design

14

components of the platform, and to use the information to monitor and

control the progress of software development projects.

In the design of the FPP, effort has been taken to separate the Framework

Processing capability from the integration platform aspects of the FPP. As

a result, the Framework Processor operates somewhat independently of the

of the remaining components of the platform. Instead, the Framework

Processor has an interface built in that allows components of the platform

to query the Framework Processor for information about the development

process. Similarly, this interface has protocols built-in that allow the

platform components to notify the Framework Processor of the occurrence

of certain events. It is through these event notifications that the state of a

particular development project will be updated.

t_
O

Session Manager

Framework

Parser

Framework Manager
t r

, i Platform

,' ',Interface
I

I

Validator

X O

I
I

Constraint

,Manager
]

Propagator

f- Fact Base

Manager

/IX /IX
I I I =I

Figure 2. Framework Processor Architecture

Essentially, what this discussion says is that the Framework Processor is

meant to lie between a framework definition and an organization's

development environment (integration platform). The architecture for the

Framework Processor reflecting this idea is shown in Figure 2. The basic

operational philosophy of the Framework Processor is to take a framework

as input, perform several validation checks on the framework, translate the

framework into a set of constraints and facts, and then use the facts and
constraints to control the development process. During this process, the set

of facts and constraints are continuously updated as a result of actions by

users and messages from the integration platform (i.e., the notification of

the occurrence of certain events). This dynamic situation is continuously

monitored to detect inconsistences between the process specified in the

framework and the actual events occurring during the system
development.

FPP Preliminary Design FPP System Design

15

The overall operation of the Framework Processor is controlled by the

Framework Manager. Prior to framework installation, the Framework

Manager coordinates the framework validation process by parsing the

framework and extracting the appropriate information for the Validator

component. Three levels of validation are performed by the Validator

component and each of these validation steps are complex enough to

require an individual sub-component within the Validator. In the event

that inconsistencies are detected, the Framework Manager would assist the

framework administrator in correcting the inconsistencies.

After validation has been completed, the framework is installed and project

instantiations can be performed. Once a project has been instantiated, the

Framework Manager begins to monitor and control that project

development. At project instantiation, an initial set of assertions are

passed to the constraint propagator and a set of facts are passed to the Fact

Base Manager. From that point, information about operations and events

performed and requests for authorization by project members are

continuously passed to the Framework Manager from the users (through

the Session Manager) and the Integration Platform. This information is

then passed to the appropriate knowledge base (i.e., constraint base or fact
base). If contradictions or inconsistencies are detected, it is up to the

Framework Manager to take appropriate action to resolve the conflict. If no

problem is detected, the operations are performed, and the project state is
updated.

Notice that the knowledge bases have been split between facts and

• constraints, and accordingly two different components have been devised to

manage those knowledge bases. The reason for this is that the information

represented in the framework is so diversified that using a single

reasoning scheme became impractical. Instead, the fact base and the Fact

Base Manager capture and manage information about access privileges,

users, user roles, etc., while the constraint base and the Constraint

Propagator contain and maintain the state of the project development

process. As such, the Fact Base Manager processes the static framework

information, while the Constraint Propagator processes the dynami_
process-oriented framework information.

Since the current state of the development process will be maintained by the
Framework Processor, the Framework Processor will provide an interface

that gives the user a visualization of the state of the current project. This
visualization can be used to determine what areas the user should focus

their attention on. This visualization will reflect all constraints placed on

the user by the framework definition and will allow the user to log into a

specific project, check the status of the project, inquire about open tasks,

and browse the system development process. This direct interface provides
a nice complement to the indirect interfaces that exist between the platform

components and the Framework Processor. With the indirect interfaces, it

is difficult for a user to get a view of the "big picture." That is, the interfaces

do not allow the user to place their current activities in context with other

FPP System Design FPP Preliminary Design

16

tasks in the development effort. The visualization provided by the
Framework Processor will allow the user to determine the current context

and to better understand why certain operations are not allowed.

FPP Preliminary Design FPP System Design

17

3 FPP Detailed Design

Given the previous discussion identifying the major components of the FPP

architecture and describing how they operate and interact, it is now

possible to provide more detailed designs for the individual components.

Not surprisingly, the component modules to be detailed in this section

parallel very closely to the conceptual components of the FPP architecture.

The following list identifies the component modules that will make up the
FPP and the order in which the modules will be discussed.

1. Platform Interface,

2. User Session Interface,

3. Artifact Manager,

4. Integration Mechanism,

5. Framework Processor,

6. Facilitator,

7. Network Transaction Manager, and

8. Services.

Before proceeding, a mention of the convention for describing these

modules is necessary. Each of the elements in the list above represent

modules that will be implemented in the FPP. Each of these modules has

been broken down into submodules that will be required to provide the

necessary functionality of the module. These submodules are first

• identified and then descriptions of each are provided. In many cases, a

table is used to convey information such as input and output data as well as
related submodules.

3.1 Platform Interface

The Platform Interface module provides the protocols necessary for

applications to access the functionality provided by the FPP. The Platform
Interface module has been broken down into five submodules:

Accept Service Request,

Perform Access Authorization,

Perform Service Request,

Monitor Service Request, and

Return Service Results.

.

2.

3.

4.

5.

Due to the fact that the Integration Platform could potentially process many

service requests at the same time, the submodules of the Platform Interface

must operate in an asynchronous fashion. Once a service request is

received, the Platform Interface validates the request, through the Perform

Access Authorization submodule. After the request is deemed valid, the

FPP System Design FPP Detailed Design

18

Perform Service Request submodule routes the request to the appropriate

manager. The Monitor Service Request keeps up with the current status of

the request while it is being serviced. When the processing of the request is

complete, the Return Service Results submodule relays the result back to

the application.

The Platform Interface receives input from three sources: 1) the Artifact

Manager, 2) the Integration Services Manager, and 3) External

Applications. The only external interface is with the Applications which

communicate requests to the Platform Interface and receive results in
return.

3.1.1 Accept Service Request

The purpose of the Accept Service Request submodule of the Platform

Interface is to wait for an application to generate a request for service. This
submodule operates by continuously checking for service requests sent by

applications.

Input Data:

Output Data:

Other Elements

Application Message

Service Request

Error Message (s$ntax)

Applications

Perform Access Authorization

Figure 3_ Accept Service Request Data Information

Figure 3 summarizes the data elements manipulated by the Accept Service

Request unit. The Accept Service Request submodule builds a Service

Request from the Application Message it receives from an application. This

submodule must check the incoming message for syntactic validity. An
error message is returned if the message is not valid.

3.1.2 Perform _ Authorization

The purpose of the Perform Access Authorization submodule is to control

the access of objects and services supported by the FPP.

FPP Detailed Design FPP System Design

19

Input Data:

Outrut Data:

Other Elements:

Service Request

Error Message (access violation)

Accept Service Request

Service Request Log

Perform Service Request

Access Polic_" Database

Figure 4. Perform Access Authorization Data Information

Figure 4 summarizes the data elements manipulated by the Perform

Access Authorization unit. The Accept Service Request unit requests

authorization for the request from the Perform Access Authorization unit.

This submodule then checks the user's password, id, and role against the

access policy database to verify that the request is acceptable. If the request

is verified, the service request can then be passed on to be processed. If the

request is not verified, an error message is reported and logged. Whether

or not a service request is passed on to the Perform Service Request

submodule depends on verification of the request by the Perform Access
Authorization submodule.

3.1.3 Perform Service Request

The purpose of the Perform Service Request unit is to submit the requests to

be serviced by the other components of the Integration Platform after the

requests have been checked for syntax and authorization.

The Perform Service Request unit accepts service requests from the

Perform Access Authorization submodule. There are three types of

requests that must be handled by this module. These are 1) Artifact

requests, 2) System requests, and 3) Functional service requests. The

Perform Service Request decides which component should handle each

request and then routes the service request to that component.

Figure 5 summarizes the data elements manipulated by the Perform

Service Request submodule. The Perform Service Request submodule waits

to receive Service Requests from the Perform Access Authorization

submodule. Once a request has been received, the Perform Service Request

unit dispatches the request to the appropriate manager. As this request is

sent, the Perform Service Request unit also makes an entry in the Service

Request Log. This entry will be accessed by the Monitor Service Request

unit to monitor the status of the service request. If the Perform Service

Request submodule cannot determine which manager should service the

request, an error is reported. As a special case, the Perform Service

Request submodule will service such system requests as Login and Logout.

FPP System Design FPP Detailed Design

2O

Input Dat_

Output Data:

Other Elements:

Service Request

Error Message (unknown handler)

Service Request Log Entry

Perform Access Authorization

Monitor Service Request

Artifact Manager

Integration Services Manager

Access Policy Database

Figure 5. Perform Service Request Data Information

3.1.4 Monitor Service Request

The Monitor Service Request submodule monitors the progress of the
service requests submitted by the Perform Service Request unit. This
submodule checks the requests status and notices when special conditions
arise (e.g. termination or error conditions).

Input Data:

Output Dat_

Other Elements:

Service Request Log Entry

Service Results Message

Return Service Results

Artifact Manager

Integration Services Manager

Figure 6. Monitor Service Request Data Information

Figure 6 summarizes the data elements manipulated by the Monitor
Service Request submodule. Once a service request has been submitted, the
Platform Interface must monitor its progress. The Monitor Service Request
unit will collect the results of the service and transmit those results to the

Return Service Results submodule via a Service Results Message.

3.1.5 Retm_ Service Results

The purpose of the Return Service Results submodule is to return the
results of a request to the application which requested it.

FPP Detailed Design FPP System Design

21

Input Data:

Output Data:

Other Elements:

Service Results Message

Service Results

Monitor Service Request

Service Request Log

Figure 7. Return Service Results Data Information

Figure 7 summarizes the data elements manipulated by the Return Service
Results unit. This submodule takes a Service Results Message sent by the

Monitor Service Request submodule and matches it with the service request
that initiated it. This information can be found in the Service Request Log.

Once the initiator of the request is identified, the results can be sent back to

the application that requested the service.

3.2 User Session Interface

Though the FPP Architecture does not specifically contain a User Interface
component, it is important to provide such an interface to allow direct
access to the FPP functionality. This interface will not only allow users to
browse and become familiar with the operation of the FPP but will also
serve as a useful testing mechanism for the FPP components. The User
Session Interface module consists of three submodules:

1. Process User Gestures,

2. Make Service Query, and

3. Present Service Results.

This component operates like an application which is connected to the FPP.
It is necessary to the design in that it performs many of the administrative
tasks during the operation of the Integration Platform. It can request
services in the same way that an application can, only with more control by

the user. Requests that are essential to the operation of the Integration
Platform, such as system administration, are accomplished through the
User Session Interface.

3.2.1 Process User Gestures

The Process User Gestures submodule would serve as the main command

loop for the User Session Interface. The Process User Gestures component
is responsible for collecting the input from the user and translating it into a
data structure that can be processed by the platform. User Gestures is a
term given collectively to the different types of inputs that a user might use
to initiate a command, make a selection, choose a menu item, etc.

FPP System Design FPP Detailed Design

22

Input Data: User Gestures

Output Data:

Other Elements:

User Data Structure

Platform Interface

Figure & Process User Gesture Data Information

Figure 8 summarizes the data elements manipulated by the Process User

Gesture unit. The user interacting with the User Session Manager

generates requests for services for the FPP to handle. These user gestures

(i.e. mouse clicks, menu selections, commands, etc.) are interpreted by the

Process User Gesture submodule. The resulting message is constructed

and sent to the appropriate submodule, (i.e. Make Service Query or Process

Service Request).

3.2.2 Make Service Query

The purpose of the Make Service Query submodule is to allow the user,

during a user session, to access the databases which support the FPP.

Input Dat_

Output Data:

Other Elements:

Application MessaGe

Service Request

Platform Interface

Process User Gestures

Figure 9. Make Service Query Data Information

Figure 9 summarizes the data elements manipulated by the Make Service

Query unit. The Make Service Query submodule accepts the application

request messages and converts them into a format that is understood by the
Platform Interface. For example, the user may wish to browse the

information kept about the artifacts currently managed by the platform.

This request is made known to the system through the Process User
Gestures component which interprets the command from the user. This

"information is sent to the Make Service Query submodule and made into a

proper service request to be handled by the Services Manager.

3.2.3 Submit Service Request

The purpose of the Submit Service Request submodule is to gather the

necessary information for a user service request to be made to the Platform

Interface. This submodule takes the information from the user gestures

FPP Detailed Design FPP System Design

23

unit and converts it into a service request which can be sent to the Platform

Interface.

Input Data:

Output Data:

Other Elements:

User Data Structure

Service Request

Accept Service Request

User Interface Data

Platform Interface

Figure 10. Submit Service Request Data Information

Figure 10 summarizes the data elements manipulated by the Submit

Service Request unit. At this point, the User Session Interface will operate

like any other application interacting with the Integration Platform. Once

service request information has been input by the user, it is possible for the

Submit Service Request unit to submit a Service Request to the Accept

Service Request unit of the Platform Interface. The purpose of the Submit

Service Request unit is to collect the service request information maintained
in the data structures of the User Session Interface, generate a Service

Request, and transmit that message to the Accept Service Request unit.

3.2.4 Present Service Results

The Present Service Results submodule returns the result from a user

session to the user in a form that can be viewed by the user.

Input Data:

Output Data:

Other Elements:

Service Results Message

Results Display

Services Manager

Service Request Log

Figure 11. Present Service Results Data Information

Figure 11 summarizes the data elements manipulated by the Present
Service Results unit. The Present Service Results submodule receives a

service results message from the Platform Interface and displays the
results to the user. If there is an error result from the request, an

appropriate error message is presented.

FPP System Design FPP Detailed Design

24

• 3 Artifact Manager

The Artifact Manager module provides the all functionality necessary to

manage and control the manipulation of life cycle artifacts. The Artifact

Manager module consists of the following eight submodules:

1. Distribute Service Request,

2. List Design Artifacts,

3. Check Out Artifact,

4. Check In Artifact,

5. Create New Artifact Version,

6. Create Artifact Configuration,

7. Execute Data Operation, and

8. Execute Artifact Operation.

The List Design Artifacts, Check Out Artifact, Check In Artifact, Create

New Artifact Version, and Create Artifact Configuration submodules

represent high level functions supported by the Artifact Manager. When

the Artifact Manager receives an artifact service request from the Platform

Interface, the Distribute Service Request submodule will pass the request

on to one of these five submodules for proper execution.

3.3.1 Distribute Service Request

This submodule is responsible for distributing the service requests received
from the Platform Interface to the proper submodule of the Artifact
Manager.

Input Data:

Other Elements:

Artifact Service Request

Platform Interface

Other Artifact Manager modules .

Figure 12. Distribute Service Request Data Information

Figure 12 summarizes the data element manipulated by the Distribute

Service Request submodule. This submodule accepts input from the

Platform Interface and distributes the Artifact Service Requests to the
various components of the Artifact Manager. This submodule has no

output since it does nothing but pass on the input that it received.

FPP Detailed Design FPP System Design

25

3.3.2 List Design Artifacts

This submodule generates a list of all artifacts currently managed by the

Artifact Manager. The list may be limited by providing search criteria
which will filter out artifacts which are not needed by the user.

Input Dat_ List Artifact Command

Output Dat_

Other Elements:

List of Artifact Object Descriptions

Platform Interface

Execute Artifact Operation

Figure 13. List Design Artifacts Data Information

Figure 13 summarizes the data elements manipulated by the List Design

Artifacts submodule component of the Integration Platform. This
submodule takes a List Artifact command and converts it into an Artifact

Operation message that is sent to the Execute Artifact Operation

submodule. The results of that operation will be a list of the artifacts

requested. These results will be returned to the Platform Interface as the

results of the List Design Artifacts submodule.

3.3.3 Check Out Artifact

This submodule allows users access to design artifacts which are

registered in the Artifact Manager.

Input Data: Check Out Artifact Command

Output Data:

Other Elements:

Artifact Object

Error Message (access violation)

Platform Interface

Execute Artifact Operation

Execute Data Operation

Figure 14. Check Out Artifact Data Information

Figure 14 summarizes the data elements manipulated by the Check Out

Artifact submodule. When an application requests an artifact, the Check

Out Artifact submodule marks the artifact as being in use and restricts

access by other applications until the artifact is checked back in to the

FPP System Design FPP Detailed Design

26

repository. This is accomplished by creating Artifact Operation messages

for consumption by the Execute Artifact Operation submodule and Data

Operation messages for consumption by the Execute Data Operation
submodule. The Check Out Artifact submodule will determine whether or

not the artifact in question is already checked out by way of an Artifact

Operation message. Then the artifact will be retrieved by way of a Data

Operation message. Finally, the artifact will be marked "checked out" by

way of another Artifact Operation message. The artifact will then be
returned to the Platform Interface.

3.3.4 Check In Artifact

This submodule provides the functionality for registering artifacts with the

Artifact Manager.

Input Data: Check In Artifact Command

Output Data:

Other Elements:

Confirmation Message

Error Message (access violation)

Platform Interface

Execute Artifact Operation

Execute Data Operation

Figure 15. Check In Artifact Data Information

Figure 15 summarizes the data elements manipulated by the Check In
Artifact. This submodule receives an artifact check in command and

updates the status of the artifact in the Artifact Repository. After this

operation the artifact in question is now available for check out by another

user or application. Only artifacts that are checked out by a specific user

may be checked in by that user. This process is accomplished by sending

an Artifact Operation message to the Execute Artifact Operation submodule

to determine: 1) if the artifact previously existed and 2) if it did exist, who, if

anyone, is it checked out to. If access should be allowed, the artifact is

updated by means of a Data Operation message being sent to the Execute
Data Operation submodule. The artifact status will also be updated

through another Artifact Operation message. If all went well, a
confirmation message will be returned to the Platform Interface.

3.3.5 Create New Artifact Version

The purpose of the Create New Artifact Version is to provide a facility to

retain multiple versions of an artifact in order to maintain the history of the

development of the artifact.

FPP Detailed Design FPP System Design

27

Input Data:

Output Data:

Other Elements:

Create New Artifact Command

Confirmation Message

Error Message (access violation)

Platform Interface

Execute Artifact Operation

Figure 1_ Create New Artifact Version Data Information

Figure 16 summarizes the data elements manipulated by the Create New

Artifact Version submodule. This submodule provides the ability to create

new versions of an artifact as the artifact goes through the stages of design.
When a new version is needed the name of the artifact is sent to the Create

New Artifact Version component. This component then updates the

Artifact Repository to reflect the new version information. The old versions
are still available to allow for an audit trail which can be used to review the

development of the artifact to its present state. This process is

accomplished by a series of Artifact Operation messages being sent to the

Execute Artifact Operation submodule. If all goes well, a confirmation

message is returned to the Platform Interface.

3.3.6 Create Artifact Configuration

• The purpose of the Create Artifact Configuration is to allow the user to

group related artifacts into a configuration.

Input Data:

Output Data:

IOther Elements:

Create Artifact Configuration Command

Confirmation Message

Error Message (invalid artifact)

Platform Interface

Execute Artifact Operation

Container Object System

Artifact Repository

Figure 17. Create Artifact Configuration Data Information

Figure 17 summarizes the data elements manipulated by the Create

Artifact Configuration submodule. This submodule allows a user to create

a configuration which collects several artifacts together as a group. This

FPP System Design FPP Detailed Design

28

would allow the logical linking of related artifacts which are used or needed

together. When a configuration is created, the artifact repository is updated

by adding the configuration object. Just as in the previous submodules, this

is accomplished by sending a series of Artifact Operation messages to the

Execute Artifact Operation submodule. If all goes well, a confirmation

message will be returned to the Platform Interface.

3.3.7 Execute Data Operation

This is the submodule responsible for making a request to the Integration

Services Manager to actually perform an operation on a design artifact.

Input Data:

Output Data:

Other Elements:

Data Operation Message

Data Operation Results

Other Artifact Manager modules

Integration Services Manager

Artifact Repository

Container Object System

Figure 18. Execute Data Operation Data Information

Figure 18 summarizes the data elements manipulated by the Execute Data

Operation submodule. Up to this point operations have been defined on the

information stored about the artifacts in the repository. This submodule

allows operations to be performed on the artifact itself. The artifact location

and format information is retrieved from the Artifact Manager. From this,

the Integration Services Manager is invoked with a message to perform the

data operation service on the artifact (e.g. load, save).

3.3.8 Execute Artifimt Operation

The Execute Artifact Operation submodule is responsible for manipulating

the objects used to represent a life cycle artifact.

Figure 19 summarizes the data elements manipulated by the Execute

Artifact Operation submodule. This submodule is used to perform various

housekeeping functions on the artifact information managed by the Artifact

Manager. Artifact Operations are made to update information associated

with each artifact (e.g. location, format).

FPP Detailed Design FPP System Design

29

Input Dat_

Output Data:

Other Elements:

Artifact Operation Message

Artifact Operation Results

Other Artifact Manager modules

Integration Services Manager

Container Object System

Figure 19. Execute Artifact Operation Data Information

3_4 Integration Mechanism

The Integration Mechanism is responsible for the execution of Function

Service Request and System Commands. The Integration Mechanism

consists of the following five submodules:

1. Accept Service Request,

2. Request Service Plan,

3. Execute Service Plan,

4. Integration Services Planner, and

5. Service Registration Manager.

As these submodules are relatively complex, several of the submodules will

be further decomposed. These decompositions will be reflected in the
discussion of each submodule.

Service

Request

I Build/Retrieve

Service Plan i Execute /

Monitor
v Plan

Execution

I
Plan/Service _ [Register

Repository _" _ I Service

Service

Result .r

I_ New

V Service

Figure 20. Integration Mechnni._m Operation

Figure 20 illustrates the general operation of the Integration Mechanism.

A service request coming in causes a service plan to be produced. This is

done either through lookup or by generating a plan. The resulting plan, if

it can be found or produced, is executed by the Service Executor and the
results are returned.

FPP System Design FPP Detailed Design

3O

3.4.1 Accept Service Request

The Accept Service Request submodule is responsible for accepting

Functional Service Requests from either the Application Interface or the

Artifact Manager and directing the flow of control in the submodules of the

Integration Mechanism.

Input Data:

Output Data:

Other Elements:

Functional Service Request

Service Results

Error Message (semantics, no plan, plan error)

Platform Interface

Artifact Manager

Service Registration Manager

Request Service Plan

Execute Service Plan

Failure Recover S

Figure 21. Accept Service Request Data Information

Figure 21 summarizes the data elements manipulated by the Accept

Service Request submodule. After a Functional Service Request is received,

the first step is to check the request for semantic validity. (Requests from

users have already passed syntactic checks in the Platform Interface;

requests from other managers is trusted.) Next, an Executable Service

Plan is obtained from the Request Service Plan submodule. Third, this

service plan is sent to the Execute Service Plan submodule for execution

and monitoring. If an error occurs during processing, the Failure

Recovery submodule is called with both the plan and the error. If Failure
Recovery determines that the error is recoverable, it returns a new

Executable Service Plan and the process repeats with step three. If there

was no error in step three or the error was deemed non-recoverable, then
the results are returned to the caller.

3.4.2 Request Service Plan

The purpose of the Request Service Plan is to retrieve a service plan from

the Service Registration Manager.

FPP Detailed Design FPP System Design

31

Input Data:

Output Data:

Other Elements:

Functional Service Request

Executable Service Plan

Error Message (no plan)

Service Registration Manager

Integration Services Planner

Accept Service Request

Figure 22. Request Service Plan Data Information

Figure 22 summarizes the data elements manipulated by the Request
Service Plan submodule. The Request Service Plan unit first requests the
Service Registration Manager to search the Plan Repository for a stored
plan which can carry out the request. If a pre-generated plan is not stored
in the repository, one must be generated. This is accomplished by the
Integration Services Planner component. Once the plan is returned, either
from the Service Plan Registration Manager or from the planner, the

Request Service Plan submodule sends the plan to the Execute Service Plan
submodule. If a plan cannot be found or generated, the Request Service
Plan unit generates an error to that effect.

3.4.3 Execute Service Plan

The purpose of the Execute Service Plan submodule is to construct a multi-
step service request from the original service request and the executable
service plan received from the Integration Services Planner. The service
request plan generated may contain only one service request, if a service is
found that can handle the request as it is given. In general, the service
request will be made into several steps which, when executed, will satisfy
the service request. It must also relay an Executable Service Plan to the
Facilitator and to monitor its execution.

Figure 23 summarizes the data elements manipulated by the Execute
Service Plan submodule. This submodule takes the Executable Service Plan

that it received from the Accept Service Request submodule and relays it to
the Facilitator. It then monitors the progress of the plan. If all went well,
the results of the operation are returned. If not, an error message is
returned that estimates how far the execution got before it failed.

FPP System Design FPP Detailed Design

32

Input Dat_

Output Data:

Executable Service Plan

Service Request

Service Results

Error MessaGe (plan error)

Other Elements: Request Service Plan

Facilitator

Accept Service Request

Figure 23. Execute Service Plan Data Information

The Execute Service Plan submodule can actually be decomposed into the

following four submodules:

1. Step Completion Detection,

2. Step Failure Detection,

3. Failure Recovery, and

4. Perform Plan Context Switch.

3.4.3.1 Step Completion Detection

The purpose of the Step Completion Detection submodule is to detect when

an operation represented by a step in the service plan has completed
executing.

Output Data:

Other Elements:

Notification Message

Facilitator

Route Executable Service Plan Results

Plan Status Table

Figure 24. Step Completion Detection Data Information

Figure 24 summarizes the data elements manipulated by the Step
Completion Detection submodule. This unit monitors the execution of each

service plan being processed. When a step terminates, the Plan Status

Table is updated to reflect the current state and the next step in the plan can
be started.

FPP Detailed Design FPP System Design

33

3.4.3.2 Step Failure Detection

The purpose of the Step Failure Detection submodule is to monitor the

execution of plans to determine if a failure occurs.

Output Data:

Other Elements:

Plan Status Table

Facilitator

Route Executable Service Plan

Results

Plan Status Table

Figure 25. Step Failure Detection Data Information

Figure 25 summarizes the data elements manipulated by the Step Failure
Detection submodule. This unit updates the Plan Status Table in the event

of an error in one step of a service plan.

3.4.3.3 Failure Recovery

The purpose of the Failure Recovery submodule is to attempt to recover
from errors in an Executable Service Plan.

Input Data:

Output Data:

Other Elements:

Executable Service Plan

Error Message

Executable Service Plan

Error Message (non-recoverable)

Service Registration Manager

Accept Service Results

Figure 26. Failure Recovery Data Information

Figure 26 summarizes the data elements manipulated by the Failure

Recovery submodule. When an error occurs midway through the execution

of a service plan, it could be that the services listed in the Service

Registration database is out of date or in error. If the error resulted from

not being able to execute a particular Data Service, then the Service

Registration Manager is asked to generate a new Executable Service Plan

that does not use a particular service. If the error was due to a syntax error

in the translation of an artifact, then nothing can be done: either it is a bug

FPP System Design FPP Detailed Design

34

in the Data Service or a bug in the artifact (most likely the latter). Network

errors are non-recoverable in this sense; the Functional Service Request

should simply be resubmitted when the network is again active.

3.4.3.4 Perform Plan Context Switch

The purpose of the Perform Plan Context Switch submodule is to allow the

Service Plan Executor to process more than one plan at a time by switching

to another plan while a step in the first plan is executing.

Input Data: Plan Status Table

Other Elements: Step Completion Detection

Facilitator

Accept Executable Service Plan

Route Executable Service Plan Results

Figure 27. Perform Plan Context Switch Data Information

Figure 27 summarizes the data elements manipulated by the Perform Plan
Context Switch submodule. This unit allows the Execute Service Plan

submodule to switch to another plan while a step in a plan is executing.
This allows many plans to be invoked at the same time and simultaneous

execution of various steps from different plans. When a step is sent to be

executed, the Perform Plan Context Switch checks the plan status table to

find a plan that is ready to execute the next step. This plan is made active

and the next step is begun. The process then continues in this manner.

3.4.4 Integration Services Planner

The Integration Services Planner module is responsible for generating

valid service plans in response to a service plan request from the Request

Service Plan module. The Integration Services Planner consists of the

following five submodules:

.

2.

3.

4.

Lookup Service Plan,

Generate Functional Plan,

Perform Service Advertisement Search,

Perform Service Protocol Search, and

5. Generate Executable Plan.

FPP Detailed Design FPP System Design

35

Service

Request
Buil clTRetrie,,ve
Service Plan

\ akn/kSxervic e I /

1" '

',,Jl

Functional

Plan

Check for

Existing
Plans

Generate
Executable

Plan

Figure 28. Integration Services Planner Operation

Figure 28 illustrates the general operation of the Integration Services
Planner module. A submodule exists for each box represented in this

diagram. The Perform Service Advertisement Search and Perform Service

Protocol Search submodules are used in support of the Generate Functional
Plan submodule.

3.4.4.1 Lookup Service Plan

The purpose of the Lookup Service Plan is to check the Service Plan Cache

for the given Functional Service Request to see if a functional plan exists

already for the requested service.

Input Data:

Output Data:

Other Elements:

Functional Service Request

Functional Service Plan

Error Message (no plan)

Service Plan Cache

Generate Functional Plan

Generate Executable Plan

Figure 29. Lookup Service Plan Data Information

Figure 29 summarizes the data elements manipulated by the Lookup
Service Plan submodule. The Functional Service Request is used as a key

FPP System Design FPP Detailed Design

36

into the Service Plan Cache. If an associated Functional Service Plan exists

then execution continues with the Generate Executable Plan submodule,

otherwise a functional plan is generated by the Generate Functional Plan
submodule.

3.4.4.2 Generate Functional Plan

The purpose of the Generate Functional Plan submodule is to provide a

functional plan for a service request in the event that one is not stored in the
service plan library.

Input Dat_

Output Dat_

Other Elements:

Plan Request

Functional Service Plan

Service Repository

Hgure 30. Generate Functional Plan Data Information

Figure 30 summarizes the data elements manipulated by the Generate

Functional Plan submodule. The first step for this submodule is to find a

path using the format groups found in the plan request and calling the
Perform Service Advertisement Search. If a path is not found an error is

returned as no plan can be generated for this service request. Otherwise,

the service advertisement protocols are then used for a second search using
the Perform Service Protocol Search. If a path is found, it is this path that

represents the functional plan. For a more detailed account of the

algorithm, the reader is directed to [Ackley 91].

3.4.4.3 Perform Service Advertisement Search

The purpose of the Perform service Advertisement Search submodule is to

search the service advertisements for a path whose success determines the

feasibility of a request and to scope the plan search.

Input Data:

Output Data:

Other Elements:

Plan Request

Functional Service Plan

Service Repository

Figure 31. Perform Service Advertisement Data Information

Figure 31 summarizes the data elements manipulated by the Perform
Service Advertisement submodule. This submodule tries to search the

service advertisements to find out if a path can be found between two format

groups. The format groups are part of the Plan Request received by the

FPP Detailed Design FPP System Design

37

submodule. This is the first level of path searching which determines the

feasibility of finding an executable plan.

3.4.4.4 Perform Service Protocol Search

The purpose of the Perform Service Protocol Search submodule is to

perform a second level search at the service protocol level. This search is

performed only when a search of the service advertisements between

format groups has been successful.

,Input Data:

Output Data:

Other Elements: Service Repository

Plan Request

Functional Service Plan

Figure 32. Perform Service Protocol Search Data Information

Figure 32 summarizes the data elements manipulated by the Perform
Service Protocol Search submodule. While the Perform Service

Advertisement Search generates a high level plan path, this submodule

executes a more detailed search to begin final construction of a functional

plan. It is possible that, though a service advertisement search was

successful, a service protocol search could still fail.

3.4.4.5 Generate Executable Plan

The purpose of the Generate Executable Plan submodule is to take the

functional plan and the service request and create a sequence of steps

which can be executed. This process involves replacing the functional plan

steps with detailed specifications of the functions and their arguments that

must be executed to provided the requested service.

Input Data:

_Output Data:

Other Elements: Service Repository

Functional Plan

Service Request

Executable Service Plan

Figure 33. Generate Executable Plan Data Information

Figure 33 summarizes the data elements manipulated by the Generate

Executable Plan submodule. This submodule generates the multi-step
executable plan from the functional plan and the service request. The

executable plan contains all of the services and command arguments that

FPP System Design FPP Detailed Design

38

must be provided to the service utility to perform the steps in the executable

plan.

3.4.5 Service Registration Manager

For the Integration Services Planner to have the ability to search on the

service advertisements and protocols and to generate executable plans, the

Planner must have some knowledge of the existing services. The Service

Registration Manager module provides the platform functionality to

register service definitions. This module is composed of the following five
submodules:

.

2.

3.

4.

5.

Accept System Request,

File Service Plan,

Add Service,

Delete Service, and

Invalidate Plan.

This module handles the administration of the services definition

repository. Services and Plans are added, deleted, invalidated, and stored

through the use of the submodules contained in this module.

3.4.5.1 Accept System Request

The purpose of the Accept System Request submodule is to perform

administrative operations on the Service Advertisement Database.

Input Data:

Output Data:

Other Elements:

S_'stem Service Request

Confirmation Message

Error Message

File Service Plan

Invalidate Plan

Add Service

Delete Service

Figure 34. Accept System Request Data Information

Figure 34 summarizes the data elements manipulated by the Accept

System Request submodule. This submodule handles all System Service

Requests that have to do with manipulating the Service Advertisement

Database. The request is passed on the the appropriate submodule -- either

FPP Detailed Design FPP System Design

39

Add Service or Delete Service -- and if all goes well, a confirmation message

is returned. Otherwise an error is reported.

3.4.5.2 File Service Plan

The purpose of the File Service Plan submodule is to save a generated plan

in the Plan Repository for future use. Often, it will be the case that a service

request is repeated. Having the plan stored will eliminate the need to

regenerate a plan, saving time and resources.

Input Data:

Other Elements:

Functional Service Request

Executable Service Plan

Service Plan Cache

Accept Plan Request

Figure 35. File Service Plan Data Information

Figure 35 summarizes the data elements manipulated by the File Service

Plan submodule. The given Functional Service Request and its associated
Executable Service Plan are stored in the Service Plan Cache. No output is

produced.

3.4.5.3 Add Service

The purpose of the Add Service submodule is to add a new service to the
Service Advertisement Database. As new services are written, they can be

added to the functionality of the Integration Platform.

Input Data:

Output Data:

Other Elements:

System Service Request

Error Message

Service Repository

Service Plan Cache

Integration Services Manager

Accept System Request

Figure 36. Add Service Data Information

Figure 36 summarizes the data elements manipulated by the Add Service

submodule. Via Functional Service Requests to the Integration Services
Manager, the service indicated in the System Service Request is added to

FPP System Design FPP Detailed Design

4O

the Service Repository. If the service already existed, it is overwritten. The

Service Plan Cache is flushed so that new service plans will incorporate the

capabilities of the new service.

3.4.5.4 Delete Service

The purpose of the Delete Service submodule is to delete a service from the
Service Advertisement Database.

Input Data:

Output Dat_

Other Elements:

System Service Request

Error Message (no such service)

Service Repository

Integration Services Manager

Accept System Request

Invalidate Plan

Figure 37. Delete Service Data Information

Figure 37 summarizes the data elements manipulated by the Delete Service

submodule. This is a two step process; first the service indicated in the

System Service Request is removed from the Service Repository via a

Functional Service Request to the Integration Services Manager. Second,
Invalidate Plan is called so that the deleted service is not referenced.

3.4.5.5 Invalidate Plan

The purpose of the Invalidate Plan submodule is to remove references to a

particular service from the Service Plan Cache.

IInput Data:

Other Elements:

Service name

Service Plan Cache

Accept Service Plan

Delete Service

Figure 38. Invalidate Plan Data Information

Figure 38 summarizes the data elements manipulated by the Invalidate
Plan submodule. Invalidate Plan searches the entire Service Plan Cache

and removes any plan that references the given service. No output is

produced.

FPP Detailed Design FPP System Design

41

3_5 Framework Processor

The Framework Processor module is responsible for providing the

functionality necessary to parse development process frameworks and to
use the information maintained in the framework for monitoring and

controlling the software development process. The Framework Processor

module consists of the following eight submodules:

1. Parse Framework Definition,

2. Perform Framework Validation,

3. Initialize Framework Definition,

4. Session Manager Interface Management,

5. Project Query Processor,

6. Process Event Notification Message,

7. Resolve Process Violation Condition, and

8. Process Project Query Message.

The first three modules are necessary for the initialization of a site specific

framework. The third submodule provides functionality for visualizing the

status of projects being monitored. The final four modules are used to

update and query the current state of a specific project.

3.5.1 Parse Framework Definition

The Parse Framework Definition submodule is responsible for taking a

framework definition as input and extracting pertinent information from
that definition.

Input Data:

Output Data:

Other Elements:

Framework Definition

Framework Data Extraction Message

Extracted Data

Perform Framework Validation

Initialize Framework Definition

Figure 39. Parse Framework Definition Data Information

FPP System Design FPP Detailed Design

42

Figure 39 summarizes the data elements manipulated by the Parse

Framework Definition submodule. This submodule is used mainly in
support of the Perform Framework Validation and Initialize Framework

Definition submodules and produces output based on data extraction
messages passed from those two submodules.

3.5.2 Perform Framework Validation

The Perform Framework Validation submodule is responsible for checking

a framework for errors and inconsistencies. This process is only
performed when a framework is installed into the Framework Processor.

Input Data:

Output Data:

Other Elements:

Framework Data

Error Messages

Parse Framework Definition

Figure 40. Perform Framework Validation Data Information

Figure 40 summarizes the data elements manipulated by the Perform
Framework Validation submodule. This module takes Framework Data as

input that has been extracted by the Parse Framework Definition

submodule. The Perform Framework Validation submodule then passes

the framework through three levels of validation checking: syntax for
adherence to framework definition syntax violations, instantiation for

inconsistencies that result from initialization of the framework, and

simulation for problems in the process flow description. Throughout these
validation checks, the Perform Framework Validation submodule would

produce error messages that would require resolution by the framework
administrator.

3.5.3 InltiAliTe Framework Definition

The Initialize Framework Definition submodule instantiates a new project

that is to be monitored by the Framework Processor.

Input Data:

Output Data:

Other Elements:

Project Instantiation Request

Confirmation Message

Session Manager Interface Management

Parse Framework Definition

Figure 41. Initialize Framework Definition Data Information

FPP Detailed Design FPP System Design

Figure 41 summarizes the data elements manipulated by the Initialize
Framework Definition submodule. After receiving the project instantiation

request, this submodule initializes the Constraint Base and Fact Base to

reflect the initial or beginning state of the new project. At termdnation, the

module returns an instantiation confirmation message.

3.5.4 Session Manager Interface Management

The Session Manager Interface Management submodule is responsible for

providing a user interface to the Framework Processor. This interface will
allow a user to browse the current status of a particular project and will

provide a visualization of the development process in the context of the

specified project.

Input Data: User Gestures

Output Data: Operation Results

Other Elements: Project Query Processor

Figure 42. Session Manager Interface Management Data Information

Figure 42 summarizes the data elements manipulated by the Session

Manager Interface Management submodule. This module will receive

user gestures as input. These gestures will be interpreted to formulate
• project queries that are passed to the Project Query Processor submodule.

The results of the query are received and then displayed to the user.

3.5.5 Project Query Processor

The Project Query Processor submodule is responsible for accessing the

constraint and fact base maintained for a specific project to acquire status
information.

Input Data:

Output Data:

Other Elements:

Project Query Message

Query Results

Session Manager Interface Management

Process Project Query Message

Figure 43. Project Query Processor Data Information

Figure 43 summarizes the data elements manipulated by the Project Query
Processor submodule. The module receives project query messages as

FPP System Design FPP Detailed Design

44

input, performs the query on the appropriate knowledge base, and returns

the result to the calling module, either the Session Manager Interface

Management or Process Project Query Message modules.

3.5.6 Process Event Notification Message

The Process Event Notification Message submodule is responsible for

processing an event notification to update the state of a specific project.

This submodule represents a portion of the Framework Processor's

interface to the other components of the FPP. When an event, such as an

artifact check in is performed, the Artifact Manager will send an event
notification to this submodule.

Input Data:

Output Data:

Other Elements:

Event Notification Message

Violation Condition

Project Query Processor

Resolve Process Violation Condition

Figure 44. Proce_ Event Notification Message Data Information

Figure 44 summarizes the data elements manipulated by the Process Event

Notification Message submodule. As mentioned, this module operates on

Event Notification Messages received from external components. During

processing of the message, the Process Event Notification Message module

updates the constraint and fact base for the project indicated in the

message. In the event that a process inconsistency occurs, the module
raises a violation condition to be passed to the Resolve Process Violation
Condition module.

3.5.7 Resolve Process Violation Condition

The Resolve Process Violation Condition submodule is responsible for
resolving process violations.

Input Data:

Output Data:

Other Elements:

Violation Condition

Process Violation Message

Process Event Notification Message

Figure 45. Resolve Process Violation Condition Data Information

FPP Detailed Design FPP System Design

45

Figure 45 summarizes the data elements manipulated by the Resolve
Process Violation Condition submodule. After the module receives the

violation condition and the operation that resulted in the violation, the
Resolve Process Violation Condition module retracts assertions made on

the basis of the original event notification. After restoring the state of the

project, a violation message is generated and returned to the component

that sent the original event notification.

3.5.8 Process Project Query Message

The Process Project Query Message submodule is responsible for
processing project queries from other components of the FPP. This module

is distinct from the Project Query Processor module in that Process Project

Query Message module must perform certain user access authorization

steps before the project query message can be submitted to the Project Query
Processor.

Input Data:

Output Data:

Other Elements:

Remote Project Query Message

Project Query Results

Project Query Processor

Figure 46. Process Project Query Message Data Information

Figure 46 summarizes the data elements manipulated by the Process

Project Query Message submodule. A remote query message is received

from an external component through the Framework Processor Platform

Interface Manager. After establishing the project to be queried against and

the access authorization for the user making the request, this module can

submit a query to the Project Query Processor in a manner similar to the

Session Manager Interface Management module. The results of the query

are then passed back through the Framework Processor Platform Interface
Manager.

3_6 Facilitator

The Facilitator module is responsible for routing service messages to either

the local operating system or to a remote host through the Network
Transaction Manager. The Facilitator consists of the following four
submodules:

1. Accept Executable Service Plan Message,

2. Route Operation Results,

3. Make Network Operation Call, and

4. Make Operation Call.

FPP System Design FPP Detailed Design

46

3.6.1 Accept Executable Service Plan Message

This unit accepts an operation message and routes the message to either

the Network Manager or the Services component.

Input Data:

Output Data:

Other Elements:

Executable Service Request

Routed Service Request

Network Manager

Services

Figure 47. Accept Executable Service Plan Data Information

Figure 47 summarizes the data elements manipulated by the Accept
Executable Service Plan module. This submodule takes the Executable

Service Plan and sends the single step operations to the appropriate
component (i.e. the Make Network Operation Call or the Make Data
Operation Call).

3.6.2 Route Operation Results

This Route Operation Results module routes the results of an operation to
the originator of the service request.

Input Data:

Output Data=

Other Elements:

Service Results

Returned Results

Integration Services Manager

Network Transaction Manager

Figure 48. Route Operation Results Data Information

Figure 48 summarizes the data elements manipulated by the Route

Operation Results module. As an operation message can be received from

either the Data Services Manager or from a remote host (i.e., through the
Network Transaction Manager), the Route Operation Results unit ensures

that the results are sent to the correct calling unit.

3.6.3 Make Network Service Operation Call

The purpose of the Make Network Service Operation Call submodule is to

send the service request to the Network Transaction Manager.

FPP Detailed Design FPP System Design

47

Input Data:

Output Data:

Other Elements:

Executable Service Step

Network MessaGe

Network Manager

Figure 49. Make Network Operation Call Data Information

Figure 49 summarizes the data elements manipulated by the Make

Network Operation Call component. This submodule takes the single

service step which is to be sent over the network and places the network
destination information around it. It then sends the network message to

the Network Transaction Manager.

3.6.4 Make Service Operation Call

The purpose of the Make Service Operation Call submodule is to execute a
single data operation step by calling the service that can satisfy the request

step in the service plan.

Input Data:

i Out-put Data:

Other Elements:

Command Line

Results of Operation

Data Services

Figure 50. Make Service Operation Call Data Information

Figure 50 summarizes the data elements manipulated by the Make Service

Operation Call submodule. This submodule takes the executable command

line that it is given and has the operating system load and run the service.

3.7 Network Transaction Manager

The Network Transaction Manager is responsible for transmitting

messages from the local host to remote hosts as well as receiving messages
from remote hosts that have been sent to the local host. The Network

Transaction Manager module consists of the following three submodules:

1. Send Network Message,

2. Receive Network Message, and

3. Monitor Network Traffic.

3.7.1 Send Network Message

The purpose of the Send Network Message component is to encapsulate the

executable service request received from the Facilitator with the network

FPP System Design FPP Detailed Design

48

specific information for routing the message to its destination host. Then,

it must send the network message over the network to be received by the
Network Transaction Manager at the destination host end.

Input Data:

Output Data:

Other Elements:

Network Service Request

Network Service Results

Network Specific Message

Local Area Network (LAN)

Facilitator

Host Table

Figure 51. Send Network Message Data Information

Figure 51 summarizes the data elements manipulated by the Send Network
Message submodule. When the Facilitator decides that the service must be

made across the network, it sends the Network Manager a Network Service

Request. (See Section Make Network Operation Call above.) The Send

Network Message unit takes this data and wraps the network specific
information around it for a network transmission to the destination

Network Manager. It then sends the message across the network. The

procedure is the same if the Facilitator is returning results of a service

request. It does not matter to the Network Manager what kind of message
is to be sent (e.g. Network Service Request or Network Service Results).

3.7.2 Receive Network Message

The Receive Network Message submodule is the complement to the Send

Network Message. It receives a Network Specific Message and converts it
back to a Network Service Request or Network Service Result which is then

sent to the Facilitator running on the local host.

Figure 52 summarizes the data elements manipulated by the Receive

Network Message submodule. This unit takes incoming messages from

the Monitor Network Traffic submodule. When a message is received that

is directed to the local host, the Receive Network Message unit collects the

message from the network and removes the network specific protocol data

from it. Then, it sends the request or result, as the case may be, to the local
Facilitator.

FPP Detailed Design FPP System Design

49

Input Data:

Output Data:

Other Elements:

Network Specific Message

Network Service Request

Network Service Result

Monitor Network Traffic

LAN

Facilitator

Host Table

Figure 52. Receive Network Message Data Information

3.7.3 Monitor Network Traffic

The purpose of the Monitor Network Traffic submodule is to watch the
network for messages addressed to the local host. When one is detected the

Monitor Network Traffic unit captures it and passes it on to the Receive

Network Message submodule. In addition the Monitor Network Traffic

submodule logs the incoming messages so that they can be tracked.

Input Data:

Output Data:

Other Elements:

Network Specific Message

Network Specific Message

Network Log Entry

Receive Network Message

Network Log

LAN

Host Table

Figure 53. Monitor Network Trafl]c Data Information

Figure 53 summarizes the data elements manipulated by the Monitor
Network Traffic submodule. This unit has two functions: 1) monitor the

network for messages and 2) log incoming messages to the Network Log.

When a message addressed to the local host is detected on the network the
Monitor Network Traffic submodule must collect the data. Also, this

submodule must make an entry in the Network Log so that network traffic

may be tracked.

FPP System Design FPP Detailed Design

5O

&8 Services

The Services component of the FPP consists of many services which may be

available from various sources (e.g., the operating system, translation

utilities, database managers, or legacy systems which may be used for a

service). Any computer system running the FPP should have the ability to

invoke a service utility from the operating system. At this point, most of the

work necessary to turn a request into a result has already been done. The

form of the request is now in the native language of the service with the

program execution syntax correctly specified and command line

arguments inserted into position by the Service Plan Executor. The service

in question may be the operating system, a utility program, a database

manager, or a user defined program. It would be very difficult to

exhaustively list every submodule (or service) that is called by the Services

module even if they were all known a priori, so the following sections are
given as a template for the numerous services which will be available from

the Services component. Each service must support the following

minimum set of functions. Other functionality supported by the service
would depend entirely on the service.

3.8.1 Accept Command Line Arguments

The Accept Command Line Arguments unit is responsible for decoding the

command line arguments into an internal data structure to be used by the
service.

Input Data:

Output Data:

Other Elements:

Command Line

Internal Service Data Structure

Facilitator

Figure 54. Accept Command Line Arguments Data Information

Figure 54 summarizes the data elements manipulated by the Accept
Command Line Arguments submodule. This submodule parses the
command line for the arguments and sends this information to the

Internal Processing portion of the service utility in the form it requires.

3.8.2 Return Result

The Return Result unit is responsible for sending output from a service to

the Facilitator module. The envisioned technique for this is through the

standard output for the host computer or possibly a data file.

FPP Detailed Design FPP System Design

51

Input Data:

Output Data:

Other Elements:

(depends on service)

Result

Facilitator

Figure 55. Return Result Data Information

Figure 55 summarizes the data elements manipulated by the Return Result

submodule. Depending on the service in question, this submodule sends

the result of the processing back to the Facilitator, either through the

standard output or in a data file containing the results of the service.

3.8.3 Internal_ing

The Internal Processing unit carries out the requested service.

Input Data: (depends on service)

ResultOutput Data:

Other Elements: (depends on service)

Figure 56. Internal Processing Data Information

Figure 56 summarizes the data elements manipulated by the Internal

Processing submodule. Further description would depend on the
individual service.

FPP System Design FPP Detailed Design

4

PRECEr'J1NG PAGE BLANK NOT F_LMED

FPP Data Structures and Data Collections

53

Throughout the discussion of the design of the FPP, reference was made to

messages and objects being passed between the various modules. In

addition, access to various data collections and databases was described. In

this section, a more detailed discussion of the data objects and persistent

collections of data that are being manipulated and accessed by the

components of the FPP is provided.

4.1 FPP Data Structures

The Data Structures manipulated by the FPP represent objects that allow

various modules that make up the FPP to communicate and work together.

The following subsections will provide a brief descriptions of the data objects

necessary for the FPP to function.

4.1.1 User Data Structure

This data element is used in the User Session Interface to encode gestures

made by users of the FPP. This gesture object will be accessed to produce a

corresponding Function or Artifact Service Request that will be transmitted

to either the Artifact Manager or the Integration Services Manager.

4.1.2 Application Message

The Application Message object is used by external applications to make a

service request of the FPP. This object is passed to the Platform Interface

for processing and is also used to capture the results of the requested
service. The syntax for specifying the contents of this message object is

described in Appendices D and E of this document.

4.1.3 Artifact Object

Artifact Objects contain information that is stored by the Artifact Manager

about the artifacts that it manages. These objects are used internally by the

Artifact Manager to determine the validity of certain artifact operations, to

maintain versioning information of artifacts, and to maintain location
information about the artifacts.

4.1.4 Confirmation Message

This data element is used throughout the FPP to indicate to the calling unit

that the operation was successful. The format for the message is identical

to the Results message, making the confirmation message a special case.

The syntax for a results message is given in Appendix E.

4.1.5 Error Messages

Error Messages are also used throughout the FPP to indicate to the calling

unit that an operation was unsuccessful. Like the confirmation message,
this data element has the format of a results message.

FPP System Design FPP Detailed Design

54

4.1.6 Service Plan Structm'es

The following subsections describe the structures manipulated by the

Integration Mechanism to produce and manipulate functional and

executable service plans.

4.1.6.1 Plan Status Table

The Plan Status Table is a data element processed by the units of the

Services Manager to document the progress of a service request. As a

service request moves from stage to stage (i.e., from planning to execution),

the table entry for that service is updated to reflect each stage. With this

information the Integration Services Manager will be able to respond to

queries about the status of service requests.

4.1.6.2 Executable Service Plan

An Executable Service Plan is a plan that can be executed by the Service
Executor. This plan has been checked and will produce the proper result in

answer to the request made. In addition, the services are available to

perform the plan. This data element is used by the Integration Services

Planner, the Integration Services Manager, the Facilitator, and the
Services Executor.

4.1.6.3 Functional Service Plan

The Functional Service Plan is used only within the Integrations Services

Planner during plan generation to narrow the search before finding the
Executable Service Plan. A Functional Service Plan is a plan in which the

path is found using only the format groups of the services involved. It is

possible that an executable plan still does not exist.

4.1.6.4 Service Plan Cache

The Service Plan Cache contains the pre-generated plans which may be
used if a similar service request is made. This prevents duplicating the

generation step of the Integration Services Planner. The Service Plan

Cache is used by the Integration Services Planner and the Services

Registration Manager.

4.1.6.5 Executable Service Step

An Executable Service Step is a single atomic request within a multi-step

service plan. This executable service step will represent a utility and

arguments to that utility that, when executed, will fulfill part of a service
plan.

FPP Detailed Design FPP System Design

55

4.1.7 Service Operation Structures

4.1.7.1 Service Request

This message is used by the internal components of the FPP to initiate a

service request in the system. This message object is produced by the

Application Interface from the Application Message received from an

external application. The syntax for these message objects is described in

Appendices B and D.

4.1.7.2 Service Results

This message object is used by the internal components of the FPP to
transmit results of services back to the Platform Interface. The syntax for

this message is described in Appendix E.

4.1.8 Network Operation Structures

This section describes the structures that will be necessary to perform

network operations. These structures will be manipulated mainly by the

Network Transaction Manager.

4.1.8.1 Network Message

A Network Message is used to initiate a network operation. This type of

message is generated by the Facilitator and passed to the Network

Transaction Manager. The contents of the message represent a functional
• service that must be executed on a remote host. The format that Network

Messages must take is described in Appendix F.

4.1.8.2 Network Specific Message

When the Network Transaction Manager receives a Network Message from

the Facilitator, the Network Transaction Manager must transform the

Network Message into a format that can be transmitted on the network

being used by the FPP. The structure that this Network Specific Message

must take is described in Appendix F.

4.2 Data Collections

The previous section described objects that will be dynamically allocated

and passed between components of the FPP. In this section, a description of
the more persistent data objects that are required for the proper operation of

the FPP are described. It should be noted that the data pertinent to the

Framework Processor is maintained separately and is not described in this
section.

FPP System Design FPP Detailed Design

56

4.2.1 Platform Interface Active Service Request Log

The Platform Interface Active Service Request Log is manipulated by the
units of the Platform Interface to maintain information about active service

requests being processed by the components of the FPP. In the event that

certain components are not currently accessible or that a step in the service

execution fails, the active request log can be used to restart the service
execution at the point of failure.

4.2.2 Network Log

The Network Log data element is used by the Network Manager to monitor

the traffic across the local area network. Each time a message is sent over

the network, the Network Log is updated by adding an entry. This log is

useful for linking message responses with the calling message as well as
assisting the FPP in failure recovery (i.e. when the network dies and a
message is lost).

4.2.3 Access Policy Database

The Access Policy Database contains the information necessary to prevent
the unauthorized access to artifacts managed by the Artifact Manager. A

user of the FPP must give their user id, password, and user role

information so that a check can be made against this policy database for

verification. In environment without access to a development process

framework, this Access Policy Database should be maintained by the
Platform Interface. However, within the FPP this information will be

main'rained by the Framework Processor. So, where the Platform Interface

would normally access its own internal access policy database, the

Platform Interface could instead query the Framework Processor for the
access authorization.

4.2.4 Artifact Repository

The Artifact Repository is the term given to the collection of artifacts
managed by the FPP. It includes the information about the artifacts as well

as the actual artifacts themselves. The principle component that handles
artifacts is the Artifact Manager.

4.2.5 Service Repository

This data storage element contains the information required to search for a
service plan and execute an executable plan. Each service must be

registered with the Service Repository by the Service Registration Manager

before it can be considered for inclusion in a service plan. The components
which reference this data element are the Integration Services Manager,

the Integration Services Planner and the Services Registration Manager.

FPP Detailed Design FPP System Design

57

4.2.6 Plan Repository

The Plan Repository maintains information about the service contracts and

the pre-stored plans that may be used to service a request. This data will be

manipulated by the Service Registration Manager and accessed by the
Integration Services Planner

4.2.7 Host _tions

This data file maintains information about the hosts that currently run as
part of the configured FPP. As a minimum, the host information will
include:

1. the Host Logical Name,

2. the Host Network Address, and

3. Supported Services.

FPP System Design FPP Detailed Design

5

p.,-r_'r_1,.,,,c. _'AC.iE B!._.DK ,_OT F!;.MED

Status and Future Directions

59

This document represents the final installation in a series of documents

detailing the design of the Framework Programmable Platform. As a

result, the design stage of the FPP system can be considered complete. The

next step in the FPP development will be to begin implementation of the

designs represented in these documents. During this process, any design

flaws will hopefully be discovered and the designs updated to reflect the
corrections.

The initial focus of the FPP implementation will center on the Framework

Processor. This focus is justified as several projects currently exist that

address the issue of integration platforms. However, the characteristics of

the Framework Processor represent new concepts that have not received

much attention in the past. In an effort to advance this framework

technology as far as possible, the Framework Processor will receive the

most attention.

One other aspect of the FPP project that will be addressed concurrently with

the implementation of the Framework Processor will be the development of
a demonstration framework for use in demonstrating an operational FPP.

This framework definition process will be a complex procedure as the

entire software development process must be analyzed and modeled.

However, this task will be important as the framework will provide the

opportunity to fully test the Framework Processor that will be developed
over the next few months.

While the framework technology will be the center of attention over the next

few months, it should be mentioned again that the FPP architecture is a

derivative of the DKMS system currently being developed by KBSI. Ongoing

development of the DKMS architecture will allow us to get ahead in

developing the FPP architecture. DKMS development will also provide us

with an integration platform with which the Framework Processor can test
its Platform Interface.

FPP System Design FPP Status and Future Directions

6

PRECE911'_3 PAGE BLAI'._KNOT FILMEL',

References and Related Papers

61

[Aekley 91] Ackley, K. A., A Knowledge Based Planner for Intelligent Data

Integration within an Integrated Services Mechanism Architecture,

Thesis Project, Department of Industrial Engineering, Texas A&M

University, August, 1991.

[Aho86] Aho, A.V., Sethi, R., and Ullman, J.D., Compilers:

Principles, Techniques, and Tools, Addison-Wesley, Reading, MA,
1986.

[CFI 91] Tool Encapsulation Specification, CAD Framework Initiative,
April 17, 1991.

[DKMS90] A Design Knowledge Management System (DKMS), SBIR
Phase I Final Report, April 1990, Knowledge Based Systems,

Incorporated. Contract F41622-89-C- 1018, AFHRL, WPAFB.

[DKMS 91] Software Design Document for the Integration Platform of the

Design Knowledge Management System, KBSI-DKMS-90-TR-01-1191-

04, Volume 1, Revision 1, AL/HRGA, Wright-Patterson AFB,

November, 1991.

[EIS86] The Department of Defense Requirements for Engineering

Information Systems: Volume 1 - Operational Concepts; Volume 2 -

Requirements. J.L. Linn, R.I. Winner, editors, EIS Requirements

Team, The Institute for Defense Analyses, Alexandria, Virginia, 1986.

[EIS 89] Engineering Information Systems: Volume 1 Organization

and Concepts; Volume 2 - Specifications and Guidelines. Honeywell

Systems and Research Center, Minneapolis, MN, October, 1989.

[FPP90a] Framework Programmable Platform for the Advanced

Software Development Workstation: Concept of Operations Document.

Report to NASA and University of Houston-Clear Lake by Knowledge

Based Systems, Inc under subcontract SE.37, NCC9-16. September,
1990.

[FPP90b] Framework Programmable Platform for the Advanced
Software Development Workstation: Requirements Document. Report

to NASA and University of Houston-Clear Lake by Knowledge Based

Systems, Inc. under subcontract SE.37, NCC9-16. November, 1990.

[FPP91a] Framework Programmable Platform for the Advanced

Software Development Workstation: Integration Mechanism Design

Document. Report to NASA and University of Houston-Clear Lake by
Knowledge Based Systems, Inc. under subcontract SE.37, NCC9-16.
June, 1991.

FPP System Design References

62

[FPP91b] Framework Programmable Platform for the Advanced

Software Development Workstation: Framework Processor Design

Document. Report to NASA and University of Houston-Clear Lake by
Knowledge Based Systems, Inc. under subcontract SE.37, NCC9-16.
September, 1991.

[I2S 2 85] Judson, D.L., Integrated Information Support Systems, 1986;

Integrated Information Support System (IISS): An Evolutionary

Approach to Integration, Manufacturing Technology Division,

Materials Laboratory, Air Force Wright Aeronautical Laboratories,
1985.

[IDS 89] Integrated Design Support System (IDS) AFHRL-TR-89-6:

Volume I - Executive Overview; Volume H - IDS Introduction and

Summary; Volume III- IDS Requirements; Volume IV - IDS Task

Results; Volume V - IDS Software Documentation. AFHRL, WPAFB,
December 1989.

References FPP System Design

Appendix A Lexical and Grammar Conventions

63

Lexical Conventions

This section describes the lexical conventions used in the definition of the

specifications found in the following appendices. Where necessary a

regular definition [Aho 86] has been provided to explicitly and

unambiguously express a lexical item. The lexical conventions are:

1. A semicolon (';') starts a comment and the comment is

terminated by the end of the line.

2. Spaces (' ') between tokens are optional. However,

keywords must be surrounded by spaces and newlines.

3. An identifier is made up of a letter followed by letters,

digits, or underscores. The regular definition form of an
identifier is as follows:

.

letter ::= [a-zA-Z]

digit ::= [0-9]

identifier ::= letter (letter I digit I _)*

An integer is composed of optionally a plus or minus sign

followed by at least one digit. The integer regular
definition is as follows:

digits ::= digit digit*

.

integer ::= (+ I - I e) digits

A real number may be represented either in decimal
notation or scientific notation. Therefore, a real number

is represented by the following regular definition:

fraction ::=. digits I E

optional-exponent ::= ((E I e) (+ I - I e) digits) I E

.

real ::= (+ I - I e)digits fraction optional-exponent

A string is delimited by double quotes (....) containing any

printable ASCII character.

Grammar Conventions

Shown below are the conventions for the grammar of the specifications.

The grammar is specified by listing its productions, with the productions

for the start symbol listed first.

FPP System Design Appendix A

64

lo

.

.

o

,

,

,

non-terminal - Non-terminals symbols are represented in
italics.

terminal - Terminal symbols are represented in bold.

They represent keywords in the language. The

parenthesis contained in the grammar are part of the

specification. They are considered to be terminal symbols.

However they will not be in bold.

An expression is made up of terminals, non-terminals,

and other complex expression built from rules 4 through
7.

{ expression I expression] expression } - The vertical bar

('l') represents a selection of one and only one item from
the set of alternatives.

{expression }? - A question mark ('?') indicates that the

expression can occur zero or one times.

{expression }+ A plus sign ('+') indicates that the
expression can occur one or more times.

{expression }* - An asterisk ('*') indicates that the

expression can occur zero or more times.

Appendix A FPP System Design

65

Appendix B Data Query Language Specification

This appendix describes the language used to perform database operations.

The lexical and grammatical conventions for this grammar are identical to

those given in Appendix A.

database-command ..-"-

query -command ..-"-

entity-name "'-..-

attribute-name ..-"-

where-clause ::=

criterion "'-

attribute-spec ..-'"-

rev-op ..-"-

equality-op ..-"-

non-rev-op ..-"-

constant •"-
.o-

create-command "'-
°._

schema-name "::

list-of-entity-names "-.-

entity-names •"=

query-command l
create-command l

change-command

(select entity-name { where-clause }) I

(select* entity-name { where-clause }

id

id

:where criterion

(rev-op attribute-spee attribute-spee) I

(equality-op attribute-spec attribute-spec)

(non-rev-op attribute-spec attribute-spec)

(entity-name attribute-name id) I

(:any (entity-name attribute-name id) I
constant

equality-op I < I >l >= I <= I

string< I string> I string<= I string>=

eql eql I equal I = I string=

string-search I substring

string I number l symbol

(defschema schema-name

list-of-entity-names) I

(defentity entity-name
list-of-attribute-descriptions) l

(make-database schema-name)

id

(entity-names)

entity-name I entity-name entity-names

FPP System Design Appendix B

66

list-of-attribute-descriptions ::= (attribute-clauses)

attribute-clauses ":= attribute-clause l

attribute-clause attribute-clauses

attribute-clause ::= (attribute-name type attribute-options)

attribute-options ..-'"- {:no-nulls boolean}?

{:index boolean}?

{:unique boolean}?

{:documentation string}?

change-command ..-"- (put-attribute entity-name value) I

(get-attribute entity-name)

Appendix B FPP System Design

Appendix C

Grammar

67

Service External Representation Language

This appendix contains the complete lexical and grammar specification for
the service contract argument specification, the service contract data

specification, the service contract invocation structure, the utility
environment specification, and the termination codes specification. These
specifications are used for both the knowledge store representation and
utility registration representation. All of these specifications are derived
from the CAD Framework Initiative (CFI) tool abstraction specification

[CFI 91].

The lexical and grammatical conventions for this grammar are identical to

those given in Appendix A.

Notes:

1.

o

The identifier in an argument abstraction is unique for

the given argument specification.

The expression (value identifier) returns the string value

for a given argument.

utility-specification ::=
(utility
(pretty_name string)
(name string)
(version string)
(host string)
(location string)
(environment environment-specification*)
(termination termination-specification*)
(arguments argument-specification*)
(services service-specification*))

environment-specification ::=
(env string string-value)

termination-specification ::=
(code integer

{success I warning I error}
{ (label string) }?)

argument specification "'-- ..m

arg-boolean-decI I
arg-choice-decl I
arg-integer-decl I
arg-real-decl I
arg-string-decl

FPP System Design Appendix C

68

service-specification ::=

(protoc_

(source format-specification)

(destination format-specification)
(contr_t

{ (rate number-value) }?

(query query-specification*)

(invocation identifier*)

{ (manual string) }?

{ (description string) }?))

format-specification ..-"-

(format string string string)

query-specification ..-"-

(identifier
{ source I

destination I

user I

default I
framework I

value-specification })

value-specification ..-"-

value { true
false I
real I

integer I

string I

(choice integer) }+

arg-boolean-decl ::=

(arg boolean

identifier
true -rewrite-rule?

false-rewrite-rule?

{ (default { true I false }) }?
constraint-decl?

{ (label string) }?

{ (description string) }?)

arg-choice-decl ..'"--

(arg_choice
identifier
choice-decl choice-decl +

repeat-decl?
constraint-decl?

{ (label string) }?

{ (description string) }?)

Appendix C FPP System Design

69

arg-integer-decl ::=

(argjnteger

identifier
condition-decl?

{ (default integer) }?

{ (format { decimal I octal I hex }) }?

{ (range range-decl) }?

{ (step integer) }?

repeat-decl?
constraint-decl?

{ (label string) }?

{ (description string) }?)

arg-real-decl ::=
(arg real

identifier
condition-decl?

{ (default real) }?

{ (format scientific) }?

{ (range range-decl) }?

repeat-decl?
constraint-decl?

{ (label string) }?

{ (description string) }?)

arg-string-decl ::=
(arg_string
identifier
condition-decl?

{ (default string) }?

{ (format { to_upper I toJower }) }?

{ (length integer) }?

repeat-decl?
constraint-decl?

{ (label string) }?

{ (description string) }?)

choice -decl "'-..-

(choice true-rewrite-rule?

false-rewrite-rule?

(default { true I false })

{ (label string) }?

{ (description string) }?)

true-rewrite-rule ::=

(if_true string-value)

false-rewrite-rule ":=

FPP System Design Appendix C

7O

(if_false string-value)

constraint-decI ::=

(constraint boolean-expression)

repeat-decl ::=
(repeat range-decl delimiter-decl)

range-decl ..-"-
exactly-decl I
at-most-decl I
at-least-decl I

greater-than-decl
less-than-decl I
between-decl

exactly-decl ::=
(exactly number-value)

at-most-decl ::=

(at_most number-value)

at-least-decl ::=

(at_least number-value)

greater-than-decl ":=
(greater_than number-value)

less-than-decl ..-"-

(less_than number-value)

between-decl ::=

(between { at-least-decl I greater-than-decl }
{ at-most-decl I less-than-decl })

delimiter-decl ..-"-

(delimiters string-value string-value string-value)

string-value ::=
string I
condition-expression l
(string identifier) I
(value identifier) I ;; only string arguments
(concatenate string-value+)

condition-expression ::=
(eondiiion

{(clause boolean-expression string-value) }+)

Appendix C FPP System Design

boolean-expression ::=
true I

false I

(has_value identifier)]

(value identifier)1 ;; only boolean arguments

(and boolean-expression+)1

(or boolean-expression+)]

(xor boolean-expression+) I

(not boolean-expression) I

(equal number-value number-value) I

(string_equal string-value string-value)

number-value ::=

integer Ireal

71

FPP System Design Appendix C

Appendix D Service Request Language

73

This appendix contains the specification for the service request language

that is used to pass requests among the components of the FPP.

The lexical and grammatical conventions for this grammar are identical to
those given in Appendix A.

message ::=

requests ..-"-

request ..-"-

command ::=

arguments ::=

argument ::=

arg ::=

[requests]

request I request requests

(command arguments)

translate I system I artifact

argument I argument arguments

arg l boolean-arg

id = constant

boolean-arg ::= id I id = t-or-f

t-or-f::= t I y J yes I true I 1 I f l nil I n } no I false I 0

constant ::= string I symbol I number I list

FPP System Desiga

PRECEDING PAGE BLANK NOT FILMED

Appendix D

75

Appendix E Service Results _e

This appendix contains the specification for the service results language

that is used to pass results among the components of the FPP.

The lexical and grammatical conventions for this grammar are identical to

those given in Appendix A.

result-message ..-"-

status-messages ::=

status-message ..-"-

error-message ..-"-

results ::=

eof-marker ..-"-

data "'-
,.m

status-messages

{error-message }?
{results }?

status-message I

status-message status-messages

number string #\return

number string #\return

number string #\return data eof-marker

number done #\return

a number of bytes of data

Note: This specification is not so much a grammar as it is a message

format. The BNF grammar specification language does not have the ability

to count the bytes that are sent via a message. The system can support this

ability, it is just that the syntax specification is not enough to specify this

behavior. It must be done in the semantics of the language.

I::_ECEDI, I%_ PAGE _LA_;K i_tor F_LMED

FPP System Design Appendix E

Appendix F Network Message Format Description

77

The underlying structure of the network messages that are used by the
Network Transaction Manager is based on the OSI layered network model.

The individual requests or results messages are prepended first with
Network Transaction Manager information. This is used to identify such

things as the originating host and Network Transaction Manager IDs.
Before a message is sent over the network the Network Transaction
Manager, using the network protocol installed at the site, prepends the
network message with any network handling information. This includes
any data that is required to route the message to the proper host. The
Network Transaction Manager at the other end can now strip off the
network specific data to be left with a message which can be interpreted by
the new Network Transaction Manager. Figure 57 demonstrates how a
typical network message is constructed and sent via the Network
Transaction Manager.

The Sevice Request is sent
to the Network Tran s acSon
Manager by the Facili tator
when itis determined that a
network operabon is
required.

The Facilitator prepends Host
inform at/on to the message,
informing the Network
Transaction Man ager to what
hostthe message is addressed.

ii

Service Request Message

Host ID an d Network inform atJon

Service Request Message

The Network Tran saction
Manager then takes the
message and adds any
network specific inform ation
which is required by the
network protocol th atis
available atthe site.

Service Request Message

Figure 57. Network Message Format

This layering approach allows the flexibility of using different network
protocols with the FPP, while keeping the Network Transaction Manager
data separate from the actual service request data and the network protocol
information.

FPP System Design
PRECEDING PAGE BLAi"iK I'_)T FILMEP

Appendix F

